Selective stimulation of the D1 ATPase domain of N-ethylmaleimide-sensitive fusion protein (NSF) by soluble NSF attachment proteins. 1998

G J Steel, and A Morgan
The Physiological Laboratory, University of Liverpool, UK.

N-Ethylmaleimide-sensitive fusion protein (NSF) is required for most intracellular membrane fusion events. NSF is recruited to membranes by soluble NSF attachment proteins (SNAPs) and membrane-resident SNAP receptor (SNARE) proteins. The 20 S complex of NSF/SNAPs/SNAREs disassembles when NSF hydrolyses ATP, and this disassembly event is believed to be essential for membrane fusion. SNAPs stimulate NSF ATPase activity, but it is not known which of NSF's two ATPase domains (D1 or D2) is affected. Using recombinant mutant NSFs defective in ATP hydrolysis in one domain only, we found that SNAPs stimulate NSF ATPase activity by a selective action on the D1 domain, yet had no effect on the D2 domain. Since the D1 domain of NSF is implicated in 20 S complex disassembly, this supports the idea that SNAP stimulation of NSF ATPase activity is required for membrane fusion.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D052066 N-Ethylmaleimide-Sensitive Proteins ATPases that are members of the AAA protein superfamily (ATPase family Associated with Diverse cellular Activities). The NSFs functions, acting in conjunction with SOLUBLE NSF ATTACHMENT PROTEINS (i.e. SNAPs, which have no relation to SNAP 25), are to dissociate SNARE complexes. N-Ethylmaleimide-Sensitive ATPase,N-Ethylmaleimide-Sensitive Factor,N-Ethylmaleimide-Sensitive Factors,N-Ethylmaleimide-Sensitive Fusion Protein,N-Ethylmaleimide-Sensitive Protein,NEM-Sensitive Fusion Proteins,NSF ATPase,ATPase, N-Ethylmaleimide-Sensitive,ATPase, NSF,N Ethylmaleimide Sensitive ATPase,N Ethylmaleimide Sensitive Factor,N Ethylmaleimide Sensitive Factors,N Ethylmaleimide Sensitive Fusion Protein,N Ethylmaleimide Sensitive Protein,N Ethylmaleimide Sensitive Proteins,NEM Sensitive Fusion Proteins
D052067 Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins SNARE binding proteins that facilitate the ATP hydrolysis-driven dissociation of the SNARE complex. They are required for the binding of N-ETHYLMALEIMIDE-SENSITIVE PROTEIN (NSF) to the SNARE complex which also stimulates the ATPASE activity of NSF. They are unrelated structurally to SNAP-25 PROTEIN. Soluble N-Ethylmaleimide-Sensitive Factor Attachment Protein,NSF Attachment Protein,Soluble N-Ethylmaleimide-Sensitive Fusion Attachment Protein,Soluble NSF Attachment Protein,Soluble NSF Attachment Proteins,alpha-SNAP,beta-SNAP,gamma-SNAP,Attachment Protein, NSF,Protein, NSF Attachment,Soluble N Ethylmaleimide Sensitive Factor Attachment Protein,Soluble N Ethylmaleimide Sensitive Factor Attachment Proteins,Soluble N Ethylmaleimide Sensitive Fusion Attachment Protein,alpha SNAP,beta SNAP,gamma SNAP
D033921 Vesicular Transport Proteins A broad category of proteins involved in the formation, transport and dissolution of TRANSPORT VESICLES. They play a role in the intracellular transport of molecules contained within membrane vesicles. Vesicular transport proteins are distinguished from MEMBRANE TRANSPORT PROTEINS, which move molecules across membranes, by the mode in which the molecules are transported. Transport Proteins, Vesicular

Related Publications

G J Steel, and A Morgan
January 2001, Sheng li ke xue jin zhan [Progress in physiology],
Copied contents to your clipboard!