Synergism between yeast nucleotide and base excision repair pathways in the protection against DNA methylation damage. 1998

W Xiao, and B L Chow
Department of Microbiology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Canada S7N 5E5.

The treatment of cells with simple DNA methylating agents such as methyl methanesulfonate (MMS) results in genotoxic lesions, including 3-methyladenine which blocks DNA replication. All the organisms studied to date contain an alkylation-specific base excision repair pathway. In the yeast Saccharomyces cerevisiae, the base excision repair pathway is initiated by a Mag1 3-methyladenine DNA glycosylase that removes the damaged base, followed by the Apn1 apurinic/apyrimidinic endonuclease which cleaves the DNA strand at the abasic site for subsequent repair and synthesis. Several nucleotide excision repair pathway mutants display only slightly increased sensitivity to killing by MMS, indicating that nucleotide excision repair per se does not play a major role in the repair of DNA methylation damage. However, mag1 and apn1 mutants that are also defective in nucleotide excision repair are extremely sensitive to MMS-induced killing and the effects are synergistic. These observations suggest that nucleotide excision repair and alkylation-specific base excision repair provide alternative pathways for the repair of DNA methylation damage. In addition to their role in nucleotide excision repair, Rad1 and Rad10 form a complex that is involved in recombination repair. It was found that the apn1 rad1 and apn1 rad10 double mutants have a growth defect and are significantly more sensitive to MMS killing than apn1 rad2 and apn1 rad4 double mutants in a gradient plate assay. Furthermore, the apn1 rad1 double mutant increased both the spontaneous and MMS-induced mutation frequency. Thus, the recombination repair defects of rad1 and rad10 may confer an additional synergistic effect when combined with the apn1 mutation.

UI MeSH Term Description Entries
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D004706 Endodeoxyribonucleases A group of enzymes catalyzing the endonucleolytic cleavage of DNA. They include members of EC 3.1.21.-, EC 3.1.22.-, EC 3.1.23.- (DNA RESTRICTION ENZYMES), EC 3.1.24.- (DNA RESTRICTION ENZYMES), and EC 3.1.25.-.
D004720 Endonucleases Enzymes that catalyze the hydrolysis of the internal bonds and thereby the formation of polynucleotides or oligonucleotides from ribo- or deoxyribonucleotide chains. EC 3.1.-. Endonuclease
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D015719 Single-Strand Specific DNA and RNA Endonucleases Enzymes that catalyze the endonucleolytic cleavage of single-stranded regions of DNA or RNA molecules while leaving the double-stranded regions intact. They are particularly useful in the laboratory for producing "blunt-ended" DNA molecules from DNA with single-stranded ends and for sensitive GENETIC TECHNIQUES such as NUCLEASE PROTECTION ASSAYS that involve the detection of single-stranded DNA and RNA. Single Strand Specific DNA and RNA Endonucleases

Related Publications

W Xiao, and B L Chow
November 2011, Tuberculosis (Edinburgh, Scotland),
W Xiao, and B L Chow
November 1974, Life sciences,
W Xiao, and B L Chow
November 2009, The Plant journal : for cell and molecular biology,
W Xiao, and B L Chow
June 2013, Antioxidants & redox signaling,
Copied contents to your clipboard!