Significance of the reductase-dependent pathway for the beta-oxidation of unsaturated fatty acids with odd-numbered double bonds. Mitochondrial metabolism of 2-trans-5-cis-octadienoyl-CoA. 1998

K Shoukry, and H Schulz
Department of Chemistry, City College, City University of New York, New York, New York 10031, USA.

The beta-oxidation of unsaturated fatty acids with odd-numbered double bonds proceeds by reduction of the double bond (reductase-dependent pathway) in addition to the well established isomerization of the double bond (isomerase-dependent pathway). The metabolic significance of the reductase-dependent pathway was assessed with 2-trans-5-cis-octadienoyl-CoA (2,5-octadienoyl-CoA) and its products, all of which are metabolites of alpha-linolenic acid. A kinetic evaluation of beta-oxidation enzymes revealed that the presence of a 5-cis double bond in the substrate most adversely affected the activity of 3-ketoacyl-CoA thiolase although not enough to become rate-limiting. Concentration-dependent and time-dependent measurements indicated that most (80%) of 2,5-octadienoyl-CoA is metabolized via the isomerase-dependent pathway. The reason for the greater flux through the isomerase-dependent pathway is the higher activity of L-3-hydroxyacyl-CoA dehydrogenase as compared with Delta3,Delta2-enoyl-CoA isomerase. These two enzymes catalyze the rate-limiting steps in the isomerase-dependent and reductase-dependent pathways, respectively. Once 2,5-octadienoyl-CoA is converted to 3,5-octadienoyl-CoA (perhaps fortuitously because of the presence of Delta3,Delta2-enoyl-CoA isomerase), the only effective route for its degradation is via the reductase-dependent pathway. It is concluded that the reductase-dependent pathway assures the degradation of 3,5-dienoyl-CoA intermediates, thereby preventing the depletion of free coenzyme A and a likely impairment of mitochondrial oxidative function.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D005231 Fatty Acids, Unsaturated FATTY ACIDS in which the carbon chain contains one or more double or triple carbon-carbon bonds. Fatty Acids, Polyunsaturated,Polyunsaturated Fatty Acid,Unsaturated Fatty Acid,Polyunsaturated Fatty Acids,Acid, Polyunsaturated Fatty,Acid, Unsaturated Fatty,Acids, Polyunsaturated Fatty,Acids, Unsaturated Fatty,Fatty Acid, Polyunsaturated,Fatty Acid, Unsaturated,Unsaturated Fatty Acids
D000214 Acyl Coenzyme A S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation. Acyl CoA,Fatty Acyl CoA,Long-Chain Acyl CoA,Acyl CoA, Fatty,Acyl CoA, Long-Chain,CoA, Acyl,CoA, Fatty Acyl,CoA, Long-Chain Acyl,Coenzyme A, Acyl,Long Chain Acyl CoA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

K Shoukry, and H Schulz
August 1992, Proceedings of the National Academy of Sciences of the United States of America,
K Shoukry, and H Schulz
January 1992, Progress in clinical and biological research,
K Shoukry, and H Schulz
January 2008, Journal of oleo science,
K Shoukry, and H Schulz
January 1972, Lipids,
Copied contents to your clipboard!