Transient phosphorylation of the V1a vasopressin receptor. 1998

G Innamorati, and H Sadeghi, and M Birnbaumer
Departments of Anesthesiology and Physiology, Molecular Biology Institute, UCLA School of Medicine, Los Angeles, California 90095, USA.

The V1a arginine vasopressin receptor (V1aR) expressed in HEK 293 cells was phosphorylated after binding to arginine vasopressin (AVP). The phosphate was incorporated very rapidly into the protein but remained attached for a very short time despite the continuous presence of hormone. The extent of phosphorylation depended upon the concentration of AVP suggesting the involvement of G-protein-coupled receptor kinases. Protein kinase C (PKC) contributed to V1aR phosphorylation as demonstrated by the fact that inhibition of the kinase decreased the amount of phosphate incorporated into the receptor. However, PKC activity was not responsible for the transient nature of V1aR phosphorylation. The hormone-free receptor could be phosphorylated by phorbol ester-activated PKC. Although the phosphorylation was transient, the phosphate groups incorporated remained on the receptor protein longer than those incorporated after AVP treatment. PKC phosphorylation of unoccupied V1aR was not sufficient to promote sequestration. Vasopressin also promoted sequestration of about 80% of the surface receptor, but measurements of the rate of accumulation of inositol phosphates in the sustained presence of the ligand did not reveal a significant desensitization of coupling to phospholipase C activity. The addition of a V1aR antagonist inhibited the sustained accumulation of inositol phosphates establishing that the sustained stimulation of PLC was mediated by receptors located on the cell surface. The transient character of V1aR phosphorylation seemed intrinsic to the receptor protein rather than a consequence of signaling within the cell, and receptor sequestration appeared to be responsible for the desensitization observed in HEK 293 cells.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006388 Hemagglutinins Agents that cause agglutination of red blood cells. They include antibodies, blood group antigens, lectins, autoimmune factors, bacterial, viral, or parasitic blood agglutinins, etc. Isohemagglutinins,Exohemagglutinins,Hemagglutinin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001127 Arginine Vasopressin The predominant form of mammalian antidiuretic hormone. It is a nonapeptide containing an ARGININE at residue 8 and two disulfide-linked cysteines at residues of 1 and 6. Arg-vasopressin is used to treat DIABETES INSIPIDUS or to improve vasomotor tone and BLOOD PRESSURE. Argipressin,Vasopressin, Arginine,Arg-Vasopressin,Argipressin Tannate,Arg Vasopressin
D013755 Tetradecanoylphorbol Acetate A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. Phorbol Myristate Acetate,12-Myristoyl-13-acetylphorbol,12-O-Tetradecanoyl Phorbol 13-Acetate,Tetradecanoylphorbol Acetate, 4a alpha-Isomer,12 Myristoyl 13 acetylphorbol,12 O Tetradecanoyl Phorbol 13 Acetate,13-Acetate, 12-O-Tetradecanoyl Phorbol,Acetate, Phorbol Myristate,Acetate, Tetradecanoylphorbol,Myristate Acetate, Phorbol,Phorbol 13-Acetate, 12-O-Tetradecanoyl,Tetradecanoylphorbol Acetate, 4a alpha Isomer
D017483 Receptors, Vasopressin Specific molecular sites or proteins on or in cells to which VASOPRESSINS bind or interact in order to modify the function of the cells. Two types of vasopressin receptor exist, the V1 receptor in the vascular smooth muscle and the V2 receptor in the kidneys. The V1 receptor can be subdivided into V1a and V1b (formerly V3) receptors. Antidiuretic Hormone Receptors,Receptors, V1,Receptors, V2,V1 Receptors,V2 Receptors,Vasopressin Receptors,8-Arg-Vasopressin Receptor,Antidiuretic Hormone Receptor,Antidiuretic Hormone Receptor 1a,Antidiuretic Hormone Receptor 1b,Arginine Vasopressin Receptor,Argipressin Receptor,Argipressin Receptors,Receptor, Arginine(8)-Vasopressin,Renal-Type Arginine Vasopressin Receptor,V1 Receptor,V1a Vasopressin Receptor,V1b Vasopressin Receptor,V2 Receptor,Vascular-Hepatic Type Arginine Vasopressin Receptor,Vasopressin Receptor,Vasopressin Receptor 1,Vasopressin Type 1A Receptor,Vasopressin V1a Receptor,Vasopressin V1b Receptor,Vasopressin V2 Receptor,Vasopressin V3 Receptor,8 Arg Vasopressin Receptor,Hormone Receptor, Antidiuretic,Hormone Receptors, Antidiuretic,Receptor, Antidiuretic Hormone,Receptor, Arginine Vasopressin,Receptor, Argipressin,Receptor, V1,Receptor, V2,Receptor, Vasopressin,Receptor, Vasopressin V1b,Receptor, Vasopressin V3,Receptors, Antidiuretic Hormone,Receptors, Argipressin,Renal Type Arginine Vasopressin Receptor,V1b Receptor, Vasopressin,Vascular Hepatic Type Arginine Vasopressin Receptor,Vasopressin Receptor, V1b

Related Publications

G Innamorati, and H Sadeghi, and M Birnbaumer
October 1999, Cellular signalling,
G Innamorati, and H Sadeghi, and M Birnbaumer
January 2021, Computational and structural biotechnology journal,
G Innamorati, and H Sadeghi, and M Birnbaumer
March 2007, European journal of pharmacology,
G Innamorati, and H Sadeghi, and M Birnbaumer
April 2020, Biology of reproduction,
G Innamorati, and H Sadeghi, and M Birnbaumer
January 2007, Molecular endocrinology (Baltimore, Md.),
G Innamorati, and H Sadeghi, and M Birnbaumer
May 2007, American journal of physiology. Renal physiology,
G Innamorati, and H Sadeghi, and M Birnbaumer
October 2012, American journal of physiology. Renal physiology,
G Innamorati, and H Sadeghi, and M Birnbaumer
March 2021, International journal of molecular sciences,
G Innamorati, and H Sadeghi, and M Birnbaumer
August 1997, The Journal of biological chemistry,
Copied contents to your clipboard!