Phospholipase D and phosphatidic acid enhance the hydrolysis of phospholipids in vesicles and in cell membranes by human secreted phospholipase A2. 1998

A R Kinkaid, and R Othman, and J Voysey, and D C Wilton
Department of Biochemistry, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK.

Phosphatidyl-choline (PC) vesicles and normal cell membranes are resistant to hydrolysis by human group II secreted PLA2, an enzyme that can attain high concentrations in extracellular fluids during many inflammatory processes. This highly cationic enzyme (pI>10.5) has a marked preference for anionic phospholipid interfaces, normally present within the cell. Therefore, the ability of one such anionic phospholipid, phosphatidic acid (PA), to enhance the activity of this enzyme has been investigated in detail. Results using model membrane vesicles and a continuous fluorescence assay highlight the ability of low molar proportions of PA to stimulate vesicle hydrolysis and this stimulation with increasing PA was parallelled by enhanced interfacial binding. In contrast, no productive binding of this enzyme could be detected to the surface of pure PC vesicles. The enhancement of hydrolysis in the presence of PA could also be achieved by prior treatment of pure PC vesicles with PLD, an effect that was dependent on the concentration of PLD and the duration of exposure to this enzyme. The fluorescence assay also allowed cell membranes and whole cells to be used as substrates and whereas such membrane presentations were refractory to hydrolysis by the human enzyme, prior treatment with PLD allowed hydrolysis using concentrations of this PLA2 that would be found extracellularly under inflammatory conditions. These results highlight the potential for PA, generated at the surface of the cell membrane, to be hydrolysed by extracellular human sPLA2 with the generation of lysophosphatidic acid and other lipid mediators and provides one possible mechanism whereby this human sPLA2 could become pro-inflammatory.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D010712 Phosphatidic Acids Fatty acid derivatives of glycerophosphates. They are composed of glycerol bound in ester linkage with 1 mole of phosphoric acid at the terminal 3-hydroxyl group and with 2 moles of fatty acids at the other two hydroxyl groups. Ammonium Phosphatidate,Diacylglycerophosphates,Phosphatidic Acid,Acid, Phosphatidic,Acids, Phosphatidic,Phosphatidate, Ammonium
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D010739 Phospholipase D An enzyme found mostly in plant tissue. It hydrolyzes glycerophosphatidates with the formation of a phosphatidic acid and a nitrogenous base such as choline. This enzyme also catalyzes transphosphatidylation reactions. EC 3.1.4.4. Lecithinase D,Phosphatidylcholine Phosphohydrolase
D010741 Phospholipases A Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.

Related Publications

A R Kinkaid, and R Othman, and J Voysey, and D C Wilton
August 1998, Biochemical Society transactions,
A R Kinkaid, and R Othman, and J Voysey, and D C Wilton
September 1983, Journal of biochemistry,
A R Kinkaid, and R Othman, and J Voysey, and D C Wilton
February 1990, Biochimica et biophysica acta,
A R Kinkaid, and R Othman, and J Voysey, and D C Wilton
July 1996, Biochemistry,
A R Kinkaid, and R Othman, and J Voysey, and D C Wilton
April 2015, Journal of immunology (Baltimore, Md. : 1950),
A R Kinkaid, and R Othman, and J Voysey, and D C Wilton
January 2017, Methods in enzymology,
A R Kinkaid, and R Othman, and J Voysey, and D C Wilton
April 2022, Cell metabolism,
A R Kinkaid, and R Othman, and J Voysey, and D C Wilton
January 2007, Thrombosis research,
Copied contents to your clipboard!