Differences in the intrinsic membrane characteristics of parabrachial nucleus neurons processing gustatory and visceral information. 1998

M Kobashi, and R M Bradley
Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor 48109-078, USA.

Whole-cell current-clamp recordings were made from neurons in the rat parabrachial nucleus (PBN) in three rostro-caudal brain slices. During recording the neurons were located in one of four quadrants of the PBN. Successful recordings were obtained from neurons in three of these quadrants termed the dorsolateral (DL), dorsomedial (DM) and ventromedial (VM) quadrants. Recordings were made of the intrinsic membrane properties and repetitive discharge characteristics of 58 neurons in the DL, 60 neurons in the DM, and 54 neurons in the VM-quadrants. The input resistance of the neurons in the DL quadrant was significantly lower and the membrane time constant significantly shorter than that of the neurons in the DM- and VM-quadrants. The mean action potential duration of the VM-quadrant neurons was significantly longer than that of both DL- and DM-quadrant neurons. The discharge frequency in response to a 1500 ms 100 pA current pulse of the DL quadrant neurons was significantly lower than that of the neurons in the other two quadrants. The latency of action potential initiation following a 100 pA depolarizing current pulse was significantly longer for DL quadrant neurons compared to neurons in the other two quadrants. Neurons were divided into groups based on their response to a long depolarizing current pulse immediately preceded by a hyperpolarizing current pulse. In all three rostro-caudal slices of the PBN, the largest populations of neurons were in Group II and Group III. The results demonstrate that neurons in different locations in the PBN have different membrane and repetitive discharge properties. These different PBN locations receive inputs from the visceral and gustatory regions of the NST. It is possible therefore that the differences in properties of the PBN neurons may relate to the type of sensory information that they process.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008606 Mental Processes Conceptual functions or thinking in all its forms. Information Processing, Human,Human Information Processing
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013649 Taste The ability to detect chemicals through gustatory receptors in the mouth, including those on the TONGUE; the PALATE; the PHARYNX; and the EPIGLOTTIS. Gustation,Taste Sense,Gustations,Sense, Taste,Senses, Taste,Taste Senses,Tastes
D014781 Viscera Any of the large interior organs in any one of the three great cavities of the body, especially in the abdomen.
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M Kobashi, and R M Bradley
March 2009, Journal of neurophysiology,
M Kobashi, and R M Bradley
July 2009, Annals of the New York Academy of Sciences,
M Kobashi, and R M Bradley
March 1995, The American journal of physiology,
M Kobashi, and R M Bradley
July 2009, Annals of the New York Academy of Sciences,
M Kobashi, and R M Bradley
November 2009, Brain research,
M Kobashi, and R M Bradley
June 1989, Aichi Gakuin Daigaku Shigakkai shi,
M Kobashi, and R M Bradley
January 2008, American journal of physiology. Regulatory, integrative and comparative physiology,
M Kobashi, and R M Bradley
November 2001, American journal of physiology. Regulatory, integrative and comparative physiology,
M Kobashi, and R M Bradley
April 1990, Journal of neurophysiology,
Copied contents to your clipboard!