In vitro expression analysis of collagen biosynthesis and assembly. 1997

D Chan, and S R Lamandé, and D J McQuillan, and J F Bateman
Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Australia.

While the generalised pathway of collagen biosynthesis is well understood, the specific molecular interactions that drive chain recognition and assembly and the formation of tissue-specific extracellular supramolecular structures have not been elucidated. This review focuses on the use of in vitro collagen expression systems to explore some of these fundamental questions on the molecular basis of normal and mutant collagen assembly. Three in vitro expression/assembly systems are discussed. Firstly, a simple cell-free transcription/translation system to study the initial stages of collagen chain assembly. Secondly, a novel T7-driven high level expression system, using a recombinant vaccinia virus expressing T7 RNA polymerase, in transiently transfected cells which allows appropriate postranslational modification and collagen folding. Thirdly, the more complex questions of normal and mutant collagen extracellular matrix assembly are addressed by stable transfection and expression in cells which allow the formation of a 'tissue equivalent' matrix during long-term culture.

UI MeSH Term Description Entries
D008322 Mammals Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young. Mammalia,Mammal
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

D Chan, and S R Lamandé, and D J McQuillan, and J F Bateman
February 2017, Cellular and molecular bioengineering,
D Chan, and S R Lamandé, and D J McQuillan, and J F Bateman
September 1989, Biochemistry,
D Chan, and S R Lamandé, and D J McQuillan, and J F Bateman
January 1989, Progress in clinical and biological research,
D Chan, and S R Lamandé, and D J McQuillan, and J F Bateman
May 1996, Experimental cell research,
D Chan, and S R Lamandé, and D J McQuillan, and J F Bateman
April 2018, Biology open,
D Chan, and S R Lamandé, and D J McQuillan, and J F Bateman
October 1987, The Journal of biological chemistry,
D Chan, and S R Lamandé, and D J McQuillan, and J F Bateman
November 1971, Acta odontologica Scandinavica,
D Chan, and S R Lamandé, and D J McQuillan, and J F Bateman
June 2004, Molecular genetics and metabolism,
D Chan, and S R Lamandé, and D J McQuillan, and J F Bateman
September 1986, The Journal of biological chemistry,
D Chan, and S R Lamandé, and D J McQuillan, and J F Bateman
January 2021, Archives of biochemistry and biophysics,
Copied contents to your clipboard!