Human sperm glutathione reductase activity in situ reveals limitation in the glutathione antioxidant defense system due to supply of NADPH. 1998

B T Storey, and J G Alvarez, and K A Thompson
Center for Research on Reproduction and Women's Health, University of Pennsylvania Medical Center, Philadelphia 19104-6080, USA. bstorey@obgyn.upenn.edu

In order to characterize further the antilipoperoxidative enzyme system of human sperm, that part of the system designed to provide reducing equivalents for the reduction of highly reactive and potentially damaging lipid hydroperoxides to relatively inert hydroxylipids was examined. The substrate that provides the reducing equivalents directly to glutathione peroxidase (GPX) is reduced glutathione (GSH), which is in turn oxidized to glutathione disulfide (GSSG). The reducing equivalents needed for regeneration of GSH through the action of glutathione reductase (GRD) are provided by NADPH, produced by the action of glucose-6-phosphate dehydrogenase (G6P-DH) on substrates glucose-6-phosphate and NADP+. The kinetic properties of the enzymes GRD and G6P-DH were determined by standard enzyme activity assay at 24 and 37 degrees C. At 37 degrees C, the Vmax for GRD was found to be 36 nmol/min x 10(8) cells, with Km values for GSSG and NAPH of 150 microM and 16 microM, respectively; the Vmax for G6P-DH was 3.3 nmol/min x 10(8) cells with Km for NADP+ of 8 microM. This suggested that G6P-DH activity was limiting in this reductive pathway. The activity of GRD in situ in intact cells was estimated using the thiol-reactive fluorogenic probe ThioGlo-1, which is cell permeant and reacts rapidly with GSH to give a highly fluorescent adduct. Mixing a suspension of human sperm with the fluorogenic reagent at 37 degrees C gave an initial rapid increase in fluorescence, followed by a slower one. The rapid phase is due to reaction with intracellular GSH already present; the slow phase is due to reaction with GSH generated by the GRD-catalyzed reduction of GSSG. Both rates showed first-order kinetics. Calculation of the maximal rate as NADPH oxidation, attributable to in situ GRD activity, gave the value of 1.0 nmol/min x 10(8) cells, less than the maximum for NADPH production by the dehydrogenase. These results support the suggestion that NADPH production limits the capacity of the pathway leading to hydroperoxide reduction in human sperm. We propose that the antilipoperoxidative defense system of human sperm has just sufficient capacity to allow these cells to fulfill their function but is limited to allow their timely disposal from the female reproductive tract.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007962 Leukocytes White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES). Blood Cells, White,Blood Corpuscles, White,White Blood Cells,White Blood Corpuscles,Blood Cell, White,Blood Corpuscle, White,Corpuscle, White Blood,Corpuscles, White Blood,Leukocyte,White Blood Cell,White Blood Corpuscle
D008297 Male Males
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005954 Glucosephosphate Dehydrogenase Glucose-6-Phosphate Dehydrogenase,Dehydrogenase, Glucose-6-Phosphate,Dehydrogenase, Glucosephosphate,Glucose 6 Phosphate Dehydrogenase
D005980 Glutathione Reductase Catalyzes the oxidation of GLUTATHIONE to GLUTATHIONE DISULFIDE in the presence of NADP+. Deficiency in the enzyme is associated with HEMOLYTIC ANEMIA. Formerly listed as EC 1.6.4.2. Glutathione-Disulfide Reductase,Reductase, Glutathione,Reductase, Glutathione-Disulfide

Related Publications

B T Storey, and J G Alvarez, and K A Thompson
January 1981, Patologicheskaia fiziologiia i eksperimental'naia terapiia,
B T Storey, and J G Alvarez, and K A Thompson
January 2006, Fiziologiia cheloveka,
B T Storey, and J G Alvarez, and K A Thompson
September 2015, Biochemistry. Biokhimiia,
B T Storey, and J G Alvarez, and K A Thompson
November 2015, Bulletin of experimental biology and medicine,
B T Storey, and J G Alvarez, and K A Thompson
November 1984, Plant physiology,
Copied contents to your clipboard!