Short-term facilitation evoked during brief afferent tetani is not altered by long-term potentiation in the guinea-pig hippocampal CA1 region. 1998

M Pananceau, and H Chen, and B Gustafsson
Department of Physiology and Pharmacology, Goteborg University, Box 432, SE 40530 Goteborg, Sweden. marcp@cerco.ups-tlse.fr

1. The aim was to examine whether long-term potentiation (LTP) had effects on short-term synaptic plasticity outside those predicted from its effect on single volley-induced responses. Field recordings from the CA1 region of guinea-pig hippocampal slices were used, and short- term plasticity was evoked by five-impulse trains of 20 and 50 Hz. 2. The five-impulse trains were evoked in the presence of D(-)-2-amino-5-phosphonopentanoic acid (D-AP5; 20-50 microM), picrotoxin (100 microM), and 2-OH-saclofen (200 microM), and care was taken to avoid initiation of postsynaptic spike activation. Field responses were thus considered to reflect non-NMDA receptor-mediated activity only, and demonstrated a net facilitation during the trains. 3. The facilitation was found, on average, to be unaffected by LTP, evoked by strong afferent tetanization. This was true also when release probability had been altered either by the adenosine agonist N-cyclohexyladenosine (CHA; 100 nM) or the antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 200 nM). When examined for individual experiments, cases with increases, or decreases, of facilitation following LTP were observed. These deviations showed no relation to initial release probability or to LTP magnitude, and they were also observed in control inputs not subjected to LTP. 4. Impairment of non-NMDA receptor desensitization by cyclothiazide (30 microM) increased facilitation observed during a 50 Hz, but not a 20 Hz, train. LTP had no effect on facilitation, in the presence of this drug, either during 20 or 50 Hz trains. 5. The results suggest that the effect of LTP in the hippocampal CA1 region on non-NMDA receptor-mediated synaptic responses to a brief afferent tetanus does not differ from that on a low-frequency, single volley-induced response. They do not support the notion that LTP is based on changes in release probability of previously active synapses. If LTP is based on recruitment of previously, pre- or postsynaptically, silent synapses, these synapses must have, on average, release characteristics similar to the previously active ones.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D010852 Picrotoxin A mixture of PICROTOXININ and PICROTIN that is a noncompetitive antagonist at GABA-A receptors acting as a convulsant. Picrotoxin blocks the GAMMA-AMINOBUTYRIC ACID-activated chloride ionophore. Although it is most often used as a research tool, it has been used as a CNS stimulant and an antidote in poisoning by CNS depressants, especially the barbiturates. 3,6-Methano-8H-1,5,7-trioxacyclopenta(ij)cycloprop(a)azulene-4,8(3H)-dione, hexahydro-2a-hydroxy-9-(1-hydroxy-1-methylethyl)-8b-methyl-, (1aR-(1aalpha,2abeta,3beta,6beta,6abeta,8aS*,8bbeta,9S*))-, compd. with (1aR-(1aalpha,2abeta,3beta,6beta,6abeta,8,Cocculin
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Pananceau, and H Chen, and B Gustafsson
July 1996, Neuroreport,
M Pananceau, and H Chen, and B Gustafsson
July 1989, The European journal of neuroscience,
M Pananceau, and H Chen, and B Gustafsson
April 1999, The European journal of neuroscience,
M Pananceau, and H Chen, and B Gustafsson
July 1996, Neuroscience letters,
M Pananceau, and H Chen, and B Gustafsson
August 1992, Synapse (New York, N.Y.),
M Pananceau, and H Chen, and B Gustafsson
March 2006, Brain research,
M Pananceau, and H Chen, and B Gustafsson
June 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Pananceau, and H Chen, and B Gustafsson
February 1993, Neuropharmacology,
Copied contents to your clipboard!