Production and dosimetry of copper L ultrasoft x-rays for biological and biochemical investigations. 1998

M A Hill, and M D Vecchia, and K M Townsend, and D T Goodhead
Medical Research Council, Radiation and Genome Stability Unit, Didcot, Oxon, UK.

Ultrasoft x-rays provide a unique tool for investigating the intracellular mechanisms of radiation action. Secondary electrons are produced with a well defined energy and a range comparable with that of critical structures in the cell. Copper L characteristic x-rays of weighted average energy of 956 eV interact within the cell, mainly with the oxygen atom, typically producing a photoelectron with energy 424 eV (95%) followed by an Auger electron with an average energy of 505 eV, with a combined continuous slowing down approximation (csda) range of approximately 40 nm. The attenuation through the cell is similar to that of carbon K x-rays (277 eV, single electron), therefore a useful comparison can be made due to similar dose-averaging factors but different electron configurations (total range, and pairs versus singlets). The production, absorption, dosimetry and biological implications of Cu L x-rays using the Medical Research Council cold cathode source is described extending the number of energies available for study in the ultrasoft region. Design parameters were optimized to overcome the inherently low L-characteristic-to-bremsstrahlung yield ratio. Surface absorbed dose rates of 1 Gy min-1 have been obtained with a bremsstrahlung contamination of less than 0.5%. A confocal microscope was used to make thickness measurements on live cells to allow careful determination of the mean absorbed dose. Survival curves for V79-4 Chinese hamster cells were obtained, showing that Cu L x-rays are substantially more lethal per unit dose than are hard x-rays or gamma-rays, with a relative biological effectiveness (RBE) of 1.8. The data are consistent with the hypothesis that clustered damage at the DNA/chromatin level produced by low-energy electrons is biologically more effective.

UI MeSH Term Description Entries
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D004583 Electrons Stable elementary particles having the smallest known negative charge, present in all elements; also called negatrons. Positively charged electrons are called positrons. The numbers, energies and arrangement of electrons around atomic nuclei determine the chemical identities of elements. Beams of electrons are called CATHODE RAYS. Fast Electrons,Negatrons,Positrons,Electron,Electron, Fast,Electrons, Fast,Fast Electron,Negatron,Positron
D005720 Gamma Rays Penetrating, high-energy electromagnetic radiation emitted from atomic nuclei during NUCLEAR DECAY. The range of wavelengths of emitted radiation is between 0.1 - 100 pm which overlaps the shorter, more energetic hard X-RAYS wavelengths. The distinction between gamma rays and X-rays is based on their radiation source. Gamma Wave,Gamma Radiation,Nuclear X-Rays,Radiation, Gamma,X-Rays, Nuclear,Gamma Radiations,Gamma Ray,Gamma Waves,Nuclear X Rays,Nuclear X-Ray,Ray, Gamma,Wave, Gamma,Waves, Gamma,X Rays, Nuclear,X-Ray, Nuclear
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M A Hill, and M D Vecchia, and K M Townsend, and D T Goodhead
May 1984, Physics in medicine and biology,
M A Hill, and M D Vecchia, and K M Townsend, and D T Goodhead
January 1952, Acta dermato-venereologica,
M A Hill, and M D Vecchia, and K M Townsend, and D T Goodhead
December 2003, Physics in medicine and biology,
M A Hill, and M D Vecchia, and K M Townsend, and D T Goodhead
September 2017, Journal of radiation research,
M A Hill, and M D Vecchia, and K M Townsend, and D T Goodhead
March 2001, Radiation research,
M A Hill, and M D Vecchia, and K M Townsend, and D T Goodhead
December 1957, Journal of ultrastructure research,
M A Hill, and M D Vecchia, and K M Townsend, and D T Goodhead
December 1999, Journal of radiation research,
M A Hill, and M D Vecchia, and K M Townsend, and D T Goodhead
April 1955, The British journal of radiology,
M A Hill, and M D Vecchia, and K M Townsend, and D T Goodhead
March 1971, Journal of neurosurgery,
M A Hill, and M D Vecchia, and K M Townsend, and D T Goodhead
May 1972, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
Copied contents to your clipboard!