Fractal dimension predicts broadband ultrasound attenuation in stereolithography models of cancellous bone. 1998

C M Langton, and M A Whitehead, and T J Haire, and R Hodgskinson
University of Hull, UK.

There has been considerable debate on the relative dependence of broadband ultrasound attenuation (nBUA, dB MHz(-1) cm(-1)) upon the density and structure of cancellous bone. A nonlinear relationship between nBUA and porosity has recently been demonstrated using stereolithography models, indicating a high structural dependence for nBUA. We report here on the measurement of trabecular perimeter and fractal dimension on the two-dimensional images used to create the stereolithography models. Adjusted coefficients of determination (R2) with nBUA were 94.4% (p < 0.0001) and 98.4% (p < 0.0001) for trabecular perimeter and fractal dimension respectively. The feature of fractal dimension representing both the porosity and connectivity of a given structure is most exciting. Further work is required to determine the relationship between broadband ultrasound attenuation and fractal dimension in complex three-dimensional cancellous bone structures.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D001842 Bone and Bones A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principal cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX. Bone Tissue,Bone and Bone,Bone,Bones,Bones and Bone,Bones and Bone Tissue,Bony Apophyses,Bony Apophysis,Condyle,Apophyses, Bony,Apophysis, Bony,Bone Tissues,Condyles,Tissue, Bone,Tissues, Bone
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014463 Ultrasonography The visualization of deep structures of the body by recording the reflections or echoes of ultrasonic pulses directed into the tissues. Use of ultrasound for imaging or diagnostic purposes employs frequencies ranging from 1.6 to 10 megahertz. Echography,Echotomography,Echotomography, Computer,Sonography, Medical,Tomography, Ultrasonic,Ultrasonic Diagnosis,Ultrasonic Imaging,Ultrasonographic Imaging,Computer Echotomography,Diagnosis, Ultrasonic,Diagnostic Ultrasound,Ultrasonic Tomography,Ultrasound Imaging,Diagnoses, Ultrasonic,Diagnostic Ultrasounds,Imaging, Ultrasonic,Imaging, Ultrasonographic,Imaging, Ultrasound,Imagings, Ultrasonographic,Imagings, Ultrasound,Medical Sonography,Ultrasonic Diagnoses,Ultrasonographic Imagings,Ultrasound, Diagnostic,Ultrasounds, Diagnostic
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D017076 Computer-Aided Design The use of computers for designing and/or manufacturing of anything, including drugs, surgical procedures, orthotics, and prosthetics. CAD-CAM,Computer-Aided Manufacturing,Computer-Assisted Design,Computer-Assisted Manufacturing,Computer Aided Design,Computer Aided Manufacturing,Computer Assisted Design,Computer Assisted Manufacturing,Computer-Aided Designs,Computer-Assisted Designs,Design, Computer-Aided,Design, Computer-Assisted,Designs, Computer-Aided,Designs, Computer-Assisted,Manufacturing, Computer-Aided,Manufacturing, Computer-Assisted
D017709 Fractals Patterns (real or mathematical) which look similar at different scales, for example the network of airways in the lung which shows similar branching patterns at progressively higher magnifications. Natural fractals are self-similar across a finite range of scales while mathematical fractals are the same across an infinite range. Many natural, including biological, structures are fractal (or fractal-like). Fractals are related to "chaos" (see NONLINEAR DYNAMICS) in that chaotic processes can produce fractal structures in nature, and appropriate representations of chaotic processes usually reveal self-similarity over time. Fractal

Related Publications

C M Langton, and M A Whitehead, and T J Haire, and R Hodgskinson
January 2013, Clinical and experimental rheumatology,
C M Langton, and M A Whitehead, and T J Haire, and R Hodgskinson
April 1984, Engineering in medicine,
C M Langton, and M A Whitehead, and T J Haire, and R Hodgskinson
May 1997, Bone,
C M Langton, and M A Whitehead, and T J Haire, and R Hodgskinson
January 1995, Bone,
C M Langton, and M A Whitehead, and T J Haire, and R Hodgskinson
January 1996, Physics in medicine and biology,
C M Langton, and M A Whitehead, and T J Haire, and R Hodgskinson
December 1997, IEEE transactions on medical imaging,
C M Langton, and M A Whitehead, and T J Haire, and R Hodgskinson
September 1997, Bone,
C M Langton, and M A Whitehead, and T J Haire, and R Hodgskinson
July 2008, IEEE transactions on ultrasonics, ferroelectrics, and frequency control,
C M Langton, and M A Whitehead, and T J Haire, and R Hodgskinson
June 1991, AJR. American journal of roentgenology,
Copied contents to your clipboard!