Production of IL-10 by human natural killer cells stimulated with IL-2 and/or IL-12. 1998

P T Mehrotra, and R P Donnelly, and S Wong, and H Kanegane, and A Geremew, and H S Mostowski, and K Furuke, and J P Siegel, and E T Bloom
Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD 20852-1448, USA.

Human NK cell activity can be augmented in vitro by stimulation with IL-2 or IL-12, both of which also induce the production of IFN-gamma, TNF-alpha, and granulocyte-macrophage CSF by NK cells. For the first time, we demonstrate that freshly purified NK cells stimulated with IL-2 proliferated and produced IL-10 in a dose-dependent manner. IL-10 mRNA expression, as detected by semiquantitative reverse transcription-PCR, reached peak levels at 24 h. IL-10 protein was detectable on day 2 and further increased on days 3 and 6 as measured by ELISA. However, IL-12 alone induced neither substantial proliferation nor detectable IL-10 production by fresh NK cells, but it synergized with IL-2 in inducing IL-10 mRNA expression and protein synthesis. IL-10 production by activated NK cells was confirmed by intracytoplasmic cytokine staining by three-color immunofluorescence of CD16+ and/or CD56+ NK cells with anti-IL-10 antibody. IL-10 production by NK cells was further confirmed in the NK-like cell line, YT, which constitutively expressed IL-10 mRNA and protein. IL-12 alone did not induce NK proliferation, but it inhibited IL-2-induced proliferation. Neutralization of endogenously produced IL-10 with anti-IL-10 antibodies did not overcome the inhibition of IL-2-induced proliferation by IL-12. Together, these results demonstrate that IL-2 and IL-12 synergize to induce IL-10 production by human NK cells and that IL-12 inhibits IL-2 induced NK cell proliferation by an IL-10-independent mechanism.

UI MeSH Term Description Entries
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D016753 Interleukin-10 A cytokine produced by a variety of cell types, including T-LYMPHOCYTES; MONOCYTES; DENDRITIC CELLS; and EPITHELIAL CELLS that exerts a variety of effects on immunoregulation and INFLAMMATION. Interleukin-10 combines with itself to form a homodimeric molecule that is the biologically active form of the protein. IL-10,CSIF-10,Cytokine Synthesis Inhibitory Factor,IL10,Interleukin 10
D018664 Interleukin-12 A heterodimeric cytokine that plays a role in innate and adaptive immune responses. Interleukin-12 is a 70 kDa protein that is composed of covalently linked 40 kDa and 35 kDa subunits. It is produced by DENDRITIC CELLS; MACROPHAGES and a variety of other immune cells and plays a role in the stimulation of INTERFERON-GAMMA production by T-LYMPHOCYTES and NATURAL KILLER CELLS. Edodekin Alfa,IL-12,Natural Killer Cell Stimulatory Factor,Cytotoxic Lymphocyte Maturation Factor,IL 12,IL-12 p70,IL12,Interleukin 12,Interleukin-12 p70,Interleukin 12 p70

Related Publications

P T Mehrotra, and R P Donnelly, and S Wong, and H Kanegane, and A Geremew, and H S Mostowski, and K Furuke, and J P Siegel, and E T Bloom
September 1999, Clinical and experimental immunology,
P T Mehrotra, and R P Donnelly, and S Wong, and H Kanegane, and A Geremew, and H S Mostowski, and K Furuke, and J P Siegel, and E T Bloom
September 1993, The Journal of experimental medicine,
P T Mehrotra, and R P Donnelly, and S Wong, and H Kanegane, and A Geremew, and H S Mostowski, and K Furuke, and J P Siegel, and E T Bloom
May 1996, Journal of immunology (Baltimore, Md. : 1950),
P T Mehrotra, and R P Donnelly, and S Wong, and H Kanegane, and A Geremew, and H S Mostowski, and K Furuke, and J P Siegel, and E T Bloom
May 1997, Immunology,
P T Mehrotra, and R P Donnelly, and S Wong, and H Kanegane, and A Geremew, and H S Mostowski, and K Furuke, and J P Siegel, and E T Bloom
September 2008, Blood,
P T Mehrotra, and R P Donnelly, and S Wong, and H Kanegane, and A Geremew, and H S Mostowski, and K Furuke, and J P Siegel, and E T Bloom
August 2005, FEMS immunology and medical microbiology,
P T Mehrotra, and R P Donnelly, and S Wong, and H Kanegane, and A Geremew, and H S Mostowski, and K Furuke, and J P Siegel, and E T Bloom
September 2005, Alcoholism, clinical and experimental research,
P T Mehrotra, and R P Donnelly, and S Wong, and H Kanegane, and A Geremew, and H S Mostowski, and K Furuke, and J P Siegel, and E T Bloom
December 2009, Cell host & microbe,
P T Mehrotra, and R P Donnelly, and S Wong, and H Kanegane, and A Geremew, and H S Mostowski, and K Furuke, and J P Siegel, and E T Bloom
March 2022, Heliyon,
P T Mehrotra, and R P Donnelly, and S Wong, and H Kanegane, and A Geremew, and H S Mostowski, and K Furuke, and J P Siegel, and E T Bloom
July 1994, International immunology,
Copied contents to your clipboard!