Improved protamine-sensitive membrane electrode for monitoring heparin concentrations in whole blood via protamine titration. 1998

N Ramamurthy, and N Baliga, and J A Wahr, and U Schaller, and V C Yang, and M E Meyerhoff
Department of Chemistry, College of Pharmacy, University of Michigan, Ann Arbor 48109, USA.

An improved protamine-sensitive electrode based on a polymeric membrane doped with the charged ion exchanger dinonylnaphthalenesulfonate (DNNS) is used for monitoring heparin concentrations in whole blood. The electrode exhibits significant nonequilibrium potentiometric response to polycationic protamine over the concentration range of 0.5-20 mg/L in undiluted whole-blood samples. The sensor can serve as a simple end point detector for the determination of heparin via potentiometric titrations with protamine. Whole-blood heparin concentrations determined by the electrode method (n > or = 157) correlate well with other protamine titration-based methods, including the commercial Hepcon HMS assay (r = 0.934) and a previously reported potentiometric heparin sensor-based method (r = 0.973). Reasonable correlation was also found with a commercial chromogenic anti-Xa heparin assay (r = 0.891) with corresponding plasma samples and appropriate correction for whole-blood hematocrit levels. Whereas a significant positive bias (0.62 kU/L; P < 0.001) is observed between the anti-Xa assay and the protamine sensor methods, insignificant bias is observed between the protamine sensor and the Hepcon HMS tests (0.08 kU/L; P = 0.02). The possibility of fully automating these titrations offers a potentially simple, inexpensive, and accurate method for monitoring heparin concentrations in whole blood.

UI MeSH Term Description Entries
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D011199 Potentiometry Solution titration in which the end point is read from the electrode-potential variations with the concentrations of potential determining ions. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D011479 Protamines A group of simple proteins that yield basic amino acids on hydrolysis and that occur combined with nucleic acid in the sperm of fish. Protamines contain very few kinds of amino acids. Protamine sulfate combines with heparin to form a stable inactive complex; it is used to neutralize the anticoagulant action of heparin in the treatment of heparin overdose. (From Merck Index, 11th ed; Martindale, The Extra Pharmacopoeia, 30th ed, p692) Protamine,Protamine Sulfate,Protamine Chloride,Chloride, Protamine,Sulfate, Protamine
D004566 Electrodes Electric conductors through which electric currents enter or leave a medium, whether it be an electrolytic solution, solid, molten mass, gas, or vacuum. Anode,Anode Materials,Cathode,Cathode Materials,Anode Material,Anodes,Cathode Material,Cathodes,Electrode,Material, Anode,Material, Cathode
D004867 Equipment Design Methods and patterns of fabricating machines and related hardware. Design, Equipment,Device Design,Medical Device Design,Design, Medical Device,Designs, Medical Device,Device Design, Medical,Device Designs, Medical,Medical Device Designs,Design, Device,Designs, Device,Designs, Equipment,Device Designs,Equipment Designs
D006400 Hematocrit The volume of packed RED BLOOD CELLS in a blood specimen. The volume is measured by centrifugation in a tube with graduated markings, or with automated blood cell counters. It is an indicator of erythrocyte status in disease. For example, ANEMIA shows a low value; POLYCYTHEMIA, a high value. Erythrocyte Volume, Packed,Packed Red-Cell Volume,Erythrocyte Volumes, Packed,Hematocrits,Packed Erythrocyte Volume,Packed Erythrocyte Volumes,Packed Red Cell Volume,Packed Red-Cell Volumes,Red-Cell Volume, Packed,Red-Cell Volumes, Packed,Volume, Packed Erythrocyte,Volume, Packed Red-Cell,Volumes, Packed Erythrocyte,Volumes, Packed Red-Cell
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D015374 Biosensing Techniques Any of a variety of procedures which use biomolecular probes to measure the presence or concentration of biological molecules, biological structures, microorganisms, etc., by translating a biochemical interaction at the probe surface into a quantifiable physical signal. Bioprobes,Biosensors,Electrodes, Enzyme,Biosensing Technics,Bioprobe,Biosensing Technic,Biosensing Technique,Biosensor,Electrode, Enzyme,Enzyme Electrode,Enzyme Electrodes,Technic, Biosensing,Technics, Biosensing,Technique, Biosensing,Techniques, Biosensing

Related Publications

N Ramamurthy, and N Baliga, and J A Wahr, and U Schaller, and V C Yang, and M E Meyerhoff
April 2012, The Analyst,
N Ramamurthy, and N Baliga, and J A Wahr, and U Schaller, and V C Yang, and M E Meyerhoff
January 1990, ASAIO transactions,
N Ramamurthy, and N Baliga, and J A Wahr, and U Schaller, and V C Yang, and M E Meyerhoff
May 1997, American journal of clinical pathology,
N Ramamurthy, and N Baliga, and J A Wahr, and U Schaller, and V C Yang, and M E Meyerhoff
October 1981, American journal of clinical pathology,
N Ramamurthy, and N Baliga, and J A Wahr, and U Schaller, and V C Yang, and M E Meyerhoff
March 1997, The Journal of thoracic and cardiovascular surgery,
N Ramamurthy, and N Baliga, and J A Wahr, and U Schaller, and V C Yang, and M E Meyerhoff
June 1996, Journal of cardiothoracic and vascular anesthesia,
N Ramamurthy, and N Baliga, and J A Wahr, and U Schaller, and V C Yang, and M E Meyerhoff
January 1954, Scandinavian journal of clinical and laboratory investigation,
N Ramamurthy, and N Baliga, and J A Wahr, and U Schaller, and V C Yang, and M E Meyerhoff
January 2012, Biosensors & bioelectronics,
N Ramamurthy, and N Baliga, and J A Wahr, and U Schaller, and V C Yang, and M E Meyerhoff
January 1995, Analytical biochemistry,
N Ramamurthy, and N Baliga, and J A Wahr, and U Schaller, and V C Yang, and M E Meyerhoff
November 2005, Analytical biochemistry,
Copied contents to your clipboard!