LDL induces transcription factor activator protein-1 in human endothelial cells. 1998

Y Zhu, and J H Lin, and H L Liao, and O Friedli, and L Verna, and N W Marten, and D S Straus, and M B Stemerman
Division of Biomedical Sciences, University of California, Riverside 92521, USA. yi.zhu@ucr.edu

Low density lipoprotein (LDL) has been shown to perturb endothelial cells, with manifestations ranging from alterations in free radicals and arachidonate metabolism to stress fiber formation and monocyte recruitment. Some of these changes are regulated by LDL at the transcriptional level. Using mobility shift assays with consensus sequences for various transcription factors, we have detected an increase in activator protein 1 (AP-1), but not nuclear factor-kappaB (NF-kappaB), binding in human umbilical vein endothelial cells exposed to LDL. Following transfection, AP-1-driven chloramphenicol acetyltransferase and AP-1-driven-luciferase are upregulated by LDL. In contrast, there is no effect on NF-kappaB-driven chloramphenicol acetyltransferase. AP-1 increases in a biphasic fashion, with the first peak occurring 6 hours after and the second 48 hours after exposure to LDL. This AP-1 binding increase involves c-Jun, but not c-Fos, as shown by gel supershift, Northern hybridization, and Western blotting analyses. c-Jun mRNA levels are elevated by 9 hours after and remain so until at least 24 hours after exposure to LDL. c-Jun protein levels increase at 12 hours and continue to rise for 24 hours after exposure to LDL. Moreover, this LDL-increased AP-1 binding is suppressed by several protein kinase (PK) inhibitors: the PKC inhibitor calphostin C, the cAMP-dependent PK inhibitor H89, and the tyrosine PK inhibitors genistein and lavendustin A. This study demonstrates that (1) LDL is an endothelial agonist distinct from other cell stimulators, such as cytokines, endotoxin, and phorbol 12-myristate 13-acetate, because LDL appears to activate human umbilical vein endothelial cells predominantly through the transcription factor AP-1 and not NF-kappaB; and (2) LDL increases AP-1 via mechanisms involving multiple kinase activities and c-Jun transcription.

UI MeSH Term Description Entries
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D016755 Proto-Oncogene Proteins c-jun Cellular DNA-binding proteins encoded by the c-jun genes (GENES, JUN). They are involved in growth-related transcriptional control. There appear to be three distinct functions: dimerization (with c-fos), DNA-binding, and transcriptional activation. Oncogenic transformation can take place by constitutive expression of c-jun. c-fos-Associated Protein p39,c-jun Proteins,fos-Associated Protein p39,jun B Proteins,jun D Proteins,jun Proto-Oncogene Proteins,p39(c-jun),Proto-Oncogene Products c-jun,Proto-Oncogene Proteins jun,jun Proto-Oncogene Product p39,p39 c-jun,Proto Oncogene Products c jun,Proto Oncogene Proteins c jun,Proto Oncogene Proteins jun,c fos Associated Protein p39,c jun Proteins,fos Associated Protein p39,jun Proto Oncogene Product p39,jun Proto Oncogene Proteins,p39 c jun
D016760 Proto-Oncogene Proteins c-fos Cellular DNA-binding proteins encoded by the c-fos genes (GENES, FOS). They are involved in growth-related transcriptional control. c-fos combines with c-jun (PROTO-ONCOGENE PROTEINS C-JUN) to form a c-fos/c-jun heterodimer (TRANSCRIPTION FACTOR AP-1) that binds to the TRE (TPA-responsive element) in promoters of certain genes. Fos B Protein,Fos-Related Antigen,Fos-Related Antigens,c-fos Protein,c-fos Proteins,fos Proto-Oncogene Protein,fos Proto-Oncogene Proteins,p55(c-fos),Antigens, Fos-Related,FRAs,Proto-Oncogene Products c-fos,Proto-Oncogene Proteins fos,p55 c-fos,Antigen, Fos-Related,Fos Related Antigen,Fos Related Antigens,Protein, c-fos,Protein, fos Proto-Oncogene,Proto Oncogene Products c fos,Proto Oncogene Proteins c fos,Proto Oncogene Proteins fos,Proto-Oncogene Protein, fos,c fos Protein,c fos Proteins,fos Proto Oncogene Protein,fos Proto Oncogene Proteins,p55 c fos
D047428 Protein Kinase Inhibitors Agents that inhibit PROTEIN KINASES. Protein Kinase Inhibitor,Inhibitor, Protein Kinase,Inhibitors, Protein Kinase,Kinase Inhibitor, Protein,Kinase Inhibitors, Protein

Related Publications

Y Zhu, and J H Lin, and H L Liao, and O Friedli, and L Verna, and N W Marten, and D S Straus, and M B Stemerman
September 2003, Cell biochemistry and function,
Y Zhu, and J H Lin, and H L Liao, and O Friedli, and L Verna, and N W Marten, and D S Straus, and M B Stemerman
October 1995, Arteriosclerosis, thrombosis, and vascular biology,
Y Zhu, and J H Lin, and H L Liao, and O Friedli, and L Verna, and N W Marten, and D S Straus, and M B Stemerman
October 1999, Free radical biology & medicine,
Y Zhu, and J H Lin, and H L Liao, and O Friedli, and L Verna, and N W Marten, and D S Straus, and M B Stemerman
September 2002, Infection and immunity,
Y Zhu, and J H Lin, and H L Liao, and O Friedli, and L Verna, and N W Marten, and D S Straus, and M B Stemerman
February 2015, Environmental toxicology,
Y Zhu, and J H Lin, and H L Liao, and O Friedli, and L Verna, and N W Marten, and D S Straus, and M B Stemerman
February 2004, Molecular human reproduction,
Y Zhu, and J H Lin, and H L Liao, and O Friedli, and L Verna, and N W Marten, and D S Straus, and M B Stemerman
August 1999, European journal of pharmacology,
Y Zhu, and J H Lin, and H L Liao, and O Friedli, and L Verna, and N W Marten, and D S Straus, and M B Stemerman
April 2004, Cardiovascular research,
Y Zhu, and J H Lin, and H L Liao, and O Friedli, and L Verna, and N W Marten, and D S Straus, and M B Stemerman
December 1991, Biochemical and biophysical research communications,
Y Zhu, and J H Lin, and H L Liao, and O Friedli, and L Verna, and N W Marten, and D S Straus, and M B Stemerman
May 2003, Arteriosclerosis, thrombosis, and vascular biology,
Copied contents to your clipboard!