Assembly of viroplasm and virus-like particles of rotavirus by a Semliki Forest virus replicon. 1998

M Nilsson, and C H von Bonsdorff, and K Weclewicz, and J Cohen, and L Svensson
Department of Virology, Swedish Institute for Infectious Disease Control, Stockholm, Sweden.

In this study we have used an expression system based on Semliki Forest virus (SFV) to study assembly and intracellular localization of certain capsid proteins of rotavirus in neurons and mammalian epithelial cells. The complete genes of vp2 (vp2A) and vp6 (vp6A) of group A rotavirus (SA-11) and gene 5 encoding vp6 (vp6C) of porcine group C rotavirus (strain Cowden/AmC-1) were inserted into an SFV expression replicon. Transfection of BHK-21 cells with in vitro-made SFV transcripts resulted in a high level of expression of the heterologous genes. Cotransfection with helper RNA encoding the SFV structural proteins, but lacking the genomic RNA packing signal, resulted in production of recombinant infectious virus. Immunological and biochemical analysis revealed that vp6 was expressed to high levels in primary neurons and mammalian epithelial cells and that vp6 was retained as an authentic homotrimer, stabilized by noncovalent interactions with native antigenic determinants. Thin section electron microscopy analysis revealed that vp6 alone assembled into viroplasm-like structures in the cytoplasm. While coexpression of vp2 and vp6 of group A rotavirus resulted in formation of single-shelled-like particles, no evidence of intracellular assembly was found, suggesting that other viral proteins are required for intracellular formation of single-shelled particles. A notable observation was that the vp6 proteins of group A and C rotaviruses showed different immunofluorescence patterns in BHK-21 cells; vp6C displayed an intense punctate immunofluorescence pattern, while vp6A was characterized by a pronounced filamentous staining in close vicinity to the cytoskeleton.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D012093 Replicon Any DNA sequence capable of independent replication or a molecule that possesses a REPLICATION ORIGIN and which is therefore potentially capable of being replicated in a suitable cell. (Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Replication Unit,Replication Units,Replicons,Unit, Replication,Units, Replication
D002213 Capsid The outer protein protective shell of a virus, which protects the viral nucleic acid. Capsids are composed of repeating units (capsomers or capsomeres) of CAPSID PROTEINS which when assembled together form either an icosahedral or helical shape. Procapsid,Prohead,Capsids,Procapsids,Proheads
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000956 Antigens, Viral Substances elaborated by viruses that have antigenic activity. Viral Antigen,Viral Antigens,Antigen, Viral
D012401 Rotavirus A genus of REOVIRIDAE, causing acute gastroenteritis in BIRDS and MAMMALS, including humans. Transmission is horizontal and by environmental contamination. Seven species (Rotaviruses A thru G) are recognized. Neonatal Calf Diarrhea Virus,Rotaviruses

Related Publications

M Nilsson, and C H von Bonsdorff, and K Weclewicz, and J Cohen, and L Svensson
October 2006, Journal of virology,
M Nilsson, and C H von Bonsdorff, and K Weclewicz, and J Cohen, and L Svensson
October 2017, Immunology letters,
M Nilsson, and C H von Bonsdorff, and K Weclewicz, and J Cohen, and L Svensson
January 2009, Acta virologica,
M Nilsson, and C H von Bonsdorff, and K Weclewicz, and J Cohen, and L Svensson
March 2002, Journal of veterinary science,
M Nilsson, and C H von Bonsdorff, and K Weclewicz, and J Cohen, and L Svensson
November 2005, The Journal of general virology,
M Nilsson, and C H von Bonsdorff, and K Weclewicz, and J Cohen, and L Svensson
June 1967, Nature,
M Nilsson, and C H von Bonsdorff, and K Weclewicz, and J Cohen, and L Svensson
January 1994, Archives of virology. Supplementum,
M Nilsson, and C H von Bonsdorff, and K Weclewicz, and J Cohen, and L Svensson
March 2001, Marine biotechnology (New York, N.Y.),
M Nilsson, and C H von Bonsdorff, and K Weclewicz, and J Cohen, and L Svensson
May 2013, Vaccine,
M Nilsson, and C H von Bonsdorff, and K Weclewicz, and J Cohen, and L Svensson
April 1979, Biochemical Society transactions,
Copied contents to your clipboard!