Role of the GroEL chaperonin intermediate domain in coupling ATP hydrolysis to polypeptide release. 1998

J Martin
Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Box G-J2, Providence, Rhode Island 02912, USA. Jorg_Martin@Brown.edu

Modification of the Escherichia coli chaperonin GroEL with N-ethylmaleimide at residue Cys138 affects the structural and functional integrity of the complex. Nucleotide affinity and ATPase activity of the modified chaperonin are increased, whereas cooperativity of ATP hydrolysis and affinity for GroES are reduced. As a consequence, release and folding of substrate proteins are strongly impaired and uncoupled from ATP hydrolysis in a temperature-dependent manner. Folding of dihydrofolate reductase at 25 degrees C becomes dependent on GroES, whereas folding of typically GroES-dependent proteins is blocked completely. At 37 degrees C, GroES binding is restored to normal levels, and the modified GroEL regains its chaperone activity to some extent. These results assign a central role to the intermediate GroEL domain for transmitting conformational changes between apical and central domains, and for coupling ATP hydrolysis to productive protein release.

UI MeSH Term Description Entries
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005033 Ethylmaleimide A sulfhydryl reagent that is widely used in experimental biochemical studies. N-Ethylmaleimide,N Ethylmaleimide
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013439 Sulfhydryl Reagents Chemical agents that react with SH groups. This is a chemically diverse group that is used for a variety of purposes. Among these are enzyme inhibition, enzyme reactivation or protection, and labelling. SH-Reagents,Sulfhydryl Compound Antagonists,Sulfhydryl Compound Inhibitors,Thiol Reagents,Sulfhydryl Compounds Antagonists,Sulfhydryl Compounds Inhibitors,Antagonists, Sulfhydryl Compound,Antagonists, Sulfhydryl Compounds,Compound Antagonists, Sulfhydryl,Compound Inhibitors, Sulfhydryl,Inhibitors, Sulfhydryl Compound,Inhibitors, Sulfhydryl Compounds,Reagents, Sulfhydryl,Reagents, Thiol,SH Reagents
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D016254 Mutagenesis, Insertional Mutagenesis where the mutation is caused by the introduction of foreign DNA sequences into a gene or extragenic sequence. This may occur spontaneously in vivo or be experimentally induced in vivo or in vitro. Proviral DNA insertions into or adjacent to a cellular proto-oncogene can interrupt GENETIC TRANSLATION of the coding sequences or interfere with recognition of regulatory elements and cause unregulated expression of the proto-oncogene resulting in tumor formation. Gene Insertion,Insertion Mutation,Insertional Activation,Insertional Mutagenesis,Linker-Insertion Mutagenesis,Mutagenesis, Cassette,Sequence Insertion,Viral Insertional Mutagenesis,Activation, Insertional,Activations, Insertional,Cassette Mutagenesis,Gene Insertions,Insertion Mutations,Insertion, Gene,Insertion, Sequence,Insertional Activations,Insertional Mutagenesis, Viral,Insertions, Gene,Insertions, Sequence,Linker Insertion Mutagenesis,Mutagenesis, Linker-Insertion,Mutagenesis, Viral Insertional,Mutation, Insertion,Mutations, Insertion,Sequence Insertions

Related Publications

J Martin
June 2006, Protein science : a publication of the Protein Society,
J Martin
January 1999, European journal of biochemistry,
J Martin
October 2018, International journal of biological macromolecules,
J Martin
June 2018, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
Copied contents to your clipboard!