Evidence for a non-GABAergic action of quaternary salts of bicuculline on dopaminergic neurones. 1997

V Seutin, and J Scuvée-Moreau, and A Dresse
Laboratory of Pharmacology, University of Liège, Sart Tilman par Liège, Belgium. pharephy@pharmaco.med.ulg.ac.be

Intracellular recordings were made from neurones, presumed to be dopaminergic, in the rat midbrain slice preparation. Bicuculline methiodide (BMI) and methochloride (BMC) reversibly blocked the slow, apamin-sensitive component of the afterhyperpolarization in these cells. The IC50 for this effect was about 26 microM. In comparison, BMC antagonized the input resistance decrease evoked by muscimol (3 microM) with an IC50 of 7 microM. The base of bicuculline was less potent in blocking the slow afterhyperpolarization. SR95531 (2-[carboxy-3'-propyl]-3-amino-6-paramethoxy-phenyl-pyridaziniu m bromide), another competitive GABA(A) antagonist, and picrotoxin, a non-competitive GABA(A) antagonist, also blocked the action of muscimol (IC50s: 2 and 12 microM respectively), but had no effect on the afterhyperpolarization at a concentration of up to 100 microM. Moreover, 100 microM SR95531 did not affect the blockade of the afterhyperpolarization by BMC. This blockade persisted in the presence of tetrodotoxin and was apparently not due to a reduction of calcium entry, suggesting that it involved a direct action on the channels which mediate this afterhyperpolarization. These results strongly suggest that quaternary salts of bicuculline act on more than one target in the central nervous system. Thus, the involvement of GABA(A) receptors in a given effect cannot be proven solely on the basis of its blockade by these agents.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011724 Pyridazines Six-membered rings with two adjacent nitrogen atoms also called 1,2-diazine.
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001640 Bicuculline An isoquinoline alkaloid obtained from Dicentra cucullaria and other plants. It is a competitive antagonist for GABA-A receptors. 6-(5,6,7,8-Tetrahydro-6-methyl-1,3-dioxolo(4,5-g)isoquinolin-5-yl)furo(3,4-e)1,3-benzodioxol-8(6H)one
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

V Seutin, and J Scuvée-Moreau, and A Dresse
May 1977, Neuroscience letters,
V Seutin, and J Scuvée-Moreau, and A Dresse
July 1999, Trends in pharmacological sciences,
V Seutin, and J Scuvée-Moreau, and A Dresse
March 1994, General pharmacology,
V Seutin, and J Scuvée-Moreau, and A Dresse
January 1953, Archivos del Instituto de Farmacologia Experimental (Medicina),
V Seutin, and J Scuvée-Moreau, and A Dresse
September 1950, The Journal of pharmacology and experimental therapeutics,
V Seutin, and J Scuvée-Moreau, and A Dresse
August 1974, Neuropharmacology,
V Seutin, and J Scuvée-Moreau, and A Dresse
February 1987, Die Pharmazie,
V Seutin, and J Scuvée-Moreau, and A Dresse
August 1977, Nature,
Copied contents to your clipboard!