Peroxide-scavenging deficit underlies oligodendrocyte susceptibility to oxidative stress. 1998

B H Juurlink, and S K Thorburne, and L Hertz
Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada. juurlink@duke.usask.ca

Previous work showed that the susceptibility of oligodendroglial progenitors to oxidative stress is related to their low reduced-glutathione (GSH) and high iron contents. This suggests that these cells have a poor ability to scavenge peroxides. All peroxides are scavenged by glutathione peroxidase. Glutathione peroxidase activity requires GSH as an electron donor resulting in the formation of oxidized-glutathione. Cellular GSH content is dependent upon synthesis as well as reduction of oxidized-glutathione. The objectives of the present study were to compare several parameters important in the ability to scavenge peroxides between astrocytes and oligodendroglia. Three stages of oligodendroglial differentiation were examined: the proliferative oligodendrocyte progenitor, the proliferative oligodendroblast, and the post-mitotic oligodendrocyte. We demonstrate that oligodendroglia at all stages of differentiation have less than one-half the content of GSH compared to astrocytes. This low level of GSH is due in part to a lower rate of GSH synthesis in oligodendroglia compared to astrocytes and in part to their having only one-half of the glutathione reductase activity of astrocytes. Glutathione peroxidase activity of oligodendroglia is less than 15% of that found in astrocytes. The low GSH and concomitant low glutathione peroxidase activity would tend to maintain peroxides at levels that are dangerously high if iron is released from iron stores. Oligodendroglia have high iron stores, and thus these findings emphasize how vulnerable the oligodendroglial lineage is to perturbations that result in oxidative stress.

UI MeSH Term Description Entries
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D009836 Oligodendroglia A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system. Interfascicular Oligodendroglia,Oligodendrocytes,Perineuronal Oligodendroglia,Perineuronal Satellite Oligodendroglia Cells,Perivascular Oligodendroglia,Satellite Cells, Perineuronal, Oligodendroglia,Perineuronal Satellite Oligodendrocytes,Interfascicular Oligodendroglias,Oligodendrocyte,Oligodendrocyte, Perineuronal Satellite,Oligodendrocytes, Perineuronal Satellite,Oligodendroglia, Interfascicular,Oligodendroglia, Perineuronal,Oligodendroglia, Perivascular,Perineuronal Satellite Oligodendrocyte,Satellite Oligodendrocyte, Perineuronal,Satellite Oligodendrocytes, Perineuronal
D010545 Peroxides A group of compounds that contain a bivalent O-O group, i.e., the oxygen atoms are univalent. They can either be inorganic or organic in nature. Such compounds release atomic (nascent) oxygen readily. Thus they are strong oxidizing agents and fire hazards when in contact with combustible materials, especially under high-temperature conditions. The chief industrial uses of peroxides are as oxidizing agents, bleaching agents, and initiators of polymerization. (From Hawley's Condensed Chemical Dictionary, 11th ed) Peroxide
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005979 Glutathione Peroxidase An enzyme catalyzing the oxidation of 2 moles of GLUTATHIONE in the presence of HYDROGEN PEROXIDE to yield oxidized glutathione and water. Cytosolic Glutathione Peroxidase,Glutathione Lipoperoxidase,Selenoglutathione Peroxidase,Glutathione Peroxidase, Cytosolic,Lipoperoxidase, Glutathione,Peroxidase, Glutathione,Peroxidase, Selenoglutathione
D005980 Glutathione Reductase Catalyzes the oxidation of GLUTATHIONE to GLUTATHIONE DISULFIDE in the presence of NADP+. Deficiency in the enzyme is associated with HEMOLYTIC ANEMIA. Formerly listed as EC 1.6.4.2. Glutathione-Disulfide Reductase,Reductase, Glutathione,Reductase, Glutathione-Disulfide
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell
D016166 Free Radical Scavengers Substances that eliminate free radicals. Among other effects, they protect PANCREATIC ISLETS against damage by CYTOKINES and prevent myocardial and pulmonary REPERFUSION INJURY. Free Radical Scavenger,Radical Scavenger, Free,Scavenger, Free Radical,Scavengers, Free Radical

Related Publications

B H Juurlink, and S K Thorburne, and L Hertz
May 2012, Journal of environmental biology,
B H Juurlink, and S K Thorburne, and L Hertz
November 2009, Journal of neuroscience research,
B H Juurlink, and S K Thorburne, and L Hertz
January 2015, Frontiers in plant science,
B H Juurlink, and S K Thorburne, and L Hertz
August 2023, Plant physiology,
B H Juurlink, and S K Thorburne, and L Hertz
March 2015, Indian journal of hematology & blood transfusion : an official journal of Indian Society of Hematology and Blood Transfusion,
B H Juurlink, and S K Thorburne, and L Hertz
May 1995, Biochimica et biophysica acta,
B H Juurlink, and S K Thorburne, and L Hertz
December 2010, Toxicology in vitro : an international journal published in association with BIBRA,
B H Juurlink, and S K Thorburne, and L Hertz
January 1991, Pediatric research,
Copied contents to your clipboard!