Growth-associated protein-43 (GAP-43) in the regenerating periodontal Ruffini endings of the rat incisor following injury to the inferior alveolar nerve. 1998

S H Youn, and T Maeda, and K Kurisu, and S Wakisaka
Department of Oral Anatomy and Developmental Biology, Osaka University Faculty of Dentistry, Suita, Osaka 565, Japan.

Alterations in the levels of growth-associated protein 43 (GAP-43)-like immunoreactivity (-LI) were examined in the lingual periodontal ligament of the rat incisor following two types of injury (resection and crush) to the inferior alveolar nerve (IAN). In normal animals, GAP-43-like immunoreactive (IR) structures were observed as tree-like ramifications in the alveolar half of the lingual periodontal ligament of incisors. Under immunoelectron microscopy, GAP-43-LI appeared in the Schwann sheaths associated with periodontal Ruffini endings; neither cell bodies of the terminal Schwann cells nor axonal profiles showed GAP-43-LI. During regeneration of the periodontal Ruffini endings following resection of the IAN, GAP-43-LI appeared in the cytoplasm of the terminal Schwann cell bodies and axoplasm of the terminals. The distribution of GAP-43-LI in the Ruffini endings returned to almost normal levels on days 28 and 56 following the injury. The changes in the distribution of GAP-43-LI following the crush injury were similar to those following resection; however, expression of GAP-43-LI was slightly higher for the entire experimental period compared with the resection. The transient expression of GAP-43 in the terminal Schwann cells and axonal profiles of the periodontal Ruffini endings following nerve injury suggests that GAP-43 is closely associated with axon-Schwann cells interactions during regeneration.

UI MeSH Term Description Entries
D007180 Incisor Any of the eight frontal teeth (four maxillary and four mandibular) having a sharp incisal edge for cutting food and a single root, which occurs in man both as a deciduous and a permanent tooth. (Jablonski, Dictionary of Dentistry, 1992, p820) Incisors
D008297 Male Males
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009409 Nerve Crush Treatment of muscles and nerves under pressure as a result of crush injuries. Crush, Nerve
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D010513 Periodontal Ligament The fibrous CONNECTIVE TISSUE surrounding the TOOTH ROOT, separating it from and attaching it to the alveolar bone (ALVEOLAR PROCESS). Alveolodental Ligament,Alveolodental Membrane,Gomphosis,Alveolodental Ligaments,Alveolodental Membranes,Gomphoses,Ligament, Alveolodental,Ligament, Periodontal,Membrane, Alveolodental,Periodontal Ligaments
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

S H Youn, and T Maeda, and K Kurisu, and S Wakisaka
January 2009, Neuroscience letters,
S H Youn, and T Maeda, and K Kurisu, and S Wakisaka
March 2000, Brain research,
S H Youn, and T Maeda, and K Kurisu, and S Wakisaka
December 1998, Neuroscience letters,
S H Youn, and T Maeda, and K Kurisu, and S Wakisaka
December 1999, Archives of histology and cytology,
S H Youn, and T Maeda, and K Kurisu, and S Wakisaka
June 2001, Brain research,
S H Youn, and T Maeda, and K Kurisu, and S Wakisaka
November 2003, Brain research,
Copied contents to your clipboard!