Inhibition by soman of NMDA-stimulated [3H]norepinephrine release from rat cortical slices, studies of non-cholinergic effect. 1998

H W Tang, and G Cassel
Department of Biomedicine, Division of NBC Defence, Defence Research Establishment, S-90182 UmeĂ¢, Sweden.

Effects of soman, an irreversible cholinesterase (ChE) inhibitor, on [3H]norepinephrine (NE) release evoked by N-methyl-d-aspartate (NMDA) were studied in rat brain cortical slices. Soman inhibited NMDA-stimulated [3H]NE release in a concentration-dependent manner. This effect was neither reversed by atropine, an antagonist of the muscarinic receptor, nor by d-tubocurarine, an antagonist of the nicotinic receptor. Incubation of the slices with NMDA antagonists, AP5, MK-801, ketamine or magnesium, resulted in inhibitory effects on NMDA-stimulated [3H]NE release. Soman significantly shifted the inhibition curves downward and significant interactions between these chemicals and soman were observed. Glycine potentiated the release of [3H]NE stimulated by NMDA, and soman did not alter this effect of glycine. Soman also inhibited the release of [3H]NE evoked by K+ in a concentration-dependent manner. NMDA-stimulated [3H]NE release was inhibited by tetrodotoxin (TTX), an antagonist of voltage-dependent sodium channels, and a significant interaction between soman and TTX was observed. The [3H]NE release induced by NMDA was dependent on extracellular calcium concentrations and was inhibited by nifedipine, a selective blocker of the L-type voltage-dependent calcium channels (VDCC), or cadmium, a non-specific blocker of VDCC. However, no significant interaction between the effects of soman and calcium, nifedipine, or cadmium was observed. Taken together, the results suggested that: (1) soman has a direct action at non-cholinergic sites; (2) soman may interfere with some of the regulatory sites of the NMDA receptor-ion channel complex; and (3) the voltage-dependent sodium channel, but not VDCC, may be a site of action for soman.

UI MeSH Term Description Entries
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002800 Cholinesterase Inhibitors Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system. Acetylcholinesterase Inhibitor,Acetylcholinesterase Inhibitors,Anti-Cholinesterase,Anticholinesterase,Anticholinesterase Agent,Anticholinesterase Agents,Anticholinesterase Drug,Cholinesterase Inhibitor,Anti-Cholinesterases,Anticholinesterase Drugs,Anticholinesterases,Cholinesterase Inhibitors, Irreversible,Cholinesterase Inhibitors, Reversible,Agent, Anticholinesterase,Agents, Anticholinesterase,Anti Cholinesterase,Anti Cholinesterases,Drug, Anticholinesterase,Drugs, Anticholinesterase,Inhibitor, Acetylcholinesterase,Inhibitor, Cholinesterase,Inhibitors, Acetylcholinesterase,Inhibitors, Cholinesterase,Inhibitors, Irreversible Cholinesterase,Inhibitors, Reversible Cholinesterase,Irreversible Cholinesterase Inhibitors,Reversible Cholinesterase Inhibitors
D003292 Convulsants Substances that act in the brain stem or spinal cord to produce tonic or clonic convulsions, often by removing normal inhibitory tone. They were formerly used to stimulate respiration or as antidotes to barbiturate overdose. They are now most commonly used as experimental tools. Convulsant,Convulsant Effect,Convulsant Effects,Effect, Convulsant,Effects, Convulsant
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012999 Soman An organophosphorus compound that inhibits cholinesterase. It causes seizures and has been used as a chemical warfare agent. Pinacolyl Methylphosphonofluoridate,Methylphosphonofluoridate, Pinacolyl
D014316 Tritium The radioactive isotope of hydrogen also known as hydrogen-3. It contains two NEUTRONS and one PROTON in its nucleus and decays to produce low energy BETA PARTICLES. Hydrogen-3,Hydrogen 3
D016202 N-Methylaspartate An amino acid that, as the D-isomer, is the defining agonist for the NMDA receptor subtype of glutamate receptors (RECEPTORS, NMDA). N-Methyl-D-aspartate,NMDA,N-Methyl-D-aspartic Acid,Acid, N-Methyl-D-aspartic,N Methyl D aspartate,N Methyl D aspartic Acid,N Methylaspartate

Related Publications

H W Tang, and G Cassel
June 1990, The Journal of pharmacology and experimental therapeutics,
H W Tang, and G Cassel
January 1993, The Journal of pharmacology and experimental therapeutics,
H W Tang, and G Cassel
October 1995, British journal of pharmacology,
H W Tang, and G Cassel
August 1993, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!