Differential expression of myosin heavy chain mRNA and protein isoforms in four functionally diverse rabbit skeletal muscles during pre- and postnatal development. 1998

G McKoy, and M E Léger, and F Bacou, and G Goldspink
Department of Anatomy and Developmental Biology, Royal Free Hospital School of Medicine, University of London, United Kingdom.

Myosin heavy chains (hcs) are the major determinant in the speed of contraction of skeletal muscle, and various isoforms are differentially expressed depending on the functional activity of the muscle. Using the rapid amplification of cDNA ends (3' RACE) method, we have characterised the 3' end of the embryonic, perinatal, type 1, 2a, 2x, and 2b myosin hc genes in rabbit skeletal muscle and used them as probes in RNase protection assays to quantitatively monitor their expression in different type of skeletal muscles just before and after birth. SDS PAGE was used to study the changes in the expression level of their respective protein and to determine the relative abundance of each myosin hc isoform in the muscles studied. The results show that for each anatomical muscle, the developmental changes in myosin hc gene expression at the mRNA level correlate strongly to those observed at the protein level. By studying their developmental expression in four functionally diverse skeletal muscles (semimembranosus proprius, diaphragm, tibialis anterior, and semimembranosus accessorius), it was shown that all muscles express the embryonic, perinatal, and type 1 isoform during prenatal development up to the E27 stage. In the diaphragm, low levels of the type 2a and 2x transcripts, which are adult fast isoforms, were also detected at the E27 stage. During the first week of postnatal growth the myosin hc transition leading to the expression of the adult isoforms is complex, and as many as five different myosin heavy chains are concurrently expressed in some muscles at around birth. As the animal matures, individual muscles become adapted to perform highly specialised functions, and this is reflected in the myosin hc composition within these muscles. Accordingly, the expression of the type 1 isoform, and the sequence of appearance and the expression levels of the type 2 isoforms, were exclusively dependent on the muscle type and largely reflect the functional activity of each muscle during the postnatal growth period.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D003964 Diaphragm The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION. Respiratory Diaphragm,Diaphragm, Respiratory,Diaphragms,Diaphragms, Respiratory,Respiratory Diaphragms
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014644 Genetic Variation Genotypic differences observed among individuals in a population. Genetic Diversity,Variation, Genetic,Diversity, Genetic,Diversities, Genetic,Genetic Diversities,Genetic Variations,Variations, Genetic
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic

Related Publications

G McKoy, and M E Léger, and F Bacou, and G Goldspink
May 1999, The Annals of otology, rhinology, and laryngology,
G McKoy, and M E Léger, and F Bacou, and G Goldspink
March 2006, Molecular vision,
G McKoy, and M E Léger, and F Bacou, and G Goldspink
April 1992, Journal of anatomy,
G McKoy, and M E Léger, and F Bacou, and G Goldspink
February 2017, Animal science journal = Nihon chikusan Gakkaiho,
G McKoy, and M E Léger, and F Bacou, and G Goldspink
May 2004, Meat science,
G McKoy, and M E Léger, and F Bacou, and G Goldspink
August 2003, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology,
G McKoy, and M E Léger, and F Bacou, and G Goldspink
May 2023, Anatomia, histologia, embryologia,
G McKoy, and M E Léger, and F Bacou, and G Goldspink
September 2003, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
G McKoy, and M E Léger, and F Bacou, and G Goldspink
January 1993, Cellular & molecular biology research,
G McKoy, and M E Léger, and F Bacou, and G Goldspink
August 2006, Journal of anatomy,
Copied contents to your clipboard!