Temporal and spatial regulation of gene expression mediated by the promoter for the human tissue inhibitor of metalloproteinases-3 (TIMP-3)-encoding gene. 1998

Y Zeng, and R C Rosborough, and Y Li, and A R Gupta, and J Bennett
Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, School of Medicine, Philadelphia 19104-6069, USA.

A complex interplay between enzymes involved in extracellular matrix formation and their inhibitors is thought to control organogenesis during mammalian development. Disturbance of this balance may result in a wide range of diseases, including macular degeneration, arthritis, and tumor metastases. In order to define elements which may be involved in regulating human tissue inhibitor of metalloproteinase 3 (TIMP3) expression, we isolated and sequenced a clone containing 1315 bp of the 5'-upstream region of the human TIMP-3-encoding gene. A 1.2 kb fragment of this clone, which contains multiple motifs which are binding sites for known transcription factors, was used to drive expression of the lacZ reporter gene in multiple lines of transgenic mice. TIMP3 promoter activity, detected through beta-galactosidase histochemical assay, was observed at high levels in selected tissues, the identity of which varied according to developmental stage. TIMP3 promoter activity was detected at embryonic and early postnatal stages in tissues undergoing extensive remodeling, such as developing somites, bones and joints, choroid plexus, webs between the digits, and the spongiotrophoblastic portion of the placenta. In adulthood, TIMP3 promoter activity was restricted to a few tissues which exhibit high metabolic activity or rapid turnover. These include the retinal pigment epithelium (RPE), cells of the kidney cortex, hair follicles, gingiva, ovarian follicles, and testis. The results suggest that TIMP3 expression plays an active role in developmental patterning and in the maintenance of specific differentiated tissues.

UI MeSH Term Description Entries
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005123 Eye The organ of sight constituting a pair of globular organs made up of a three-layered roughly spherical structure specialized for receiving and responding to light. Eyes
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Y Zeng, and R C Rosborough, and Y Li, and A R Gupta, and J Bennett
February 1994, Gene,
Y Zeng, and R C Rosborough, and Y Li, and A R Gupta, and J Bennett
January 1994, Genomics,
Y Zeng, and R C Rosborough, and Y Li, and A R Gupta, and J Bennett
September 2001, The Journal of clinical investigation,
Y Zeng, and R C Rosborough, and Y Li, and A R Gupta, and J Bennett
May 1996, Gene,
Y Zeng, and R C Rosborough, and Y Li, and A R Gupta, and J Bennett
October 2000, The Journal of biological chemistry,
Y Zeng, and R C Rosborough, and Y Li, and A R Gupta, and J Bennett
June 1995, The Journal of biological chemistry,
Y Zeng, and R C Rosborough, and Y Li, and A R Gupta, and J Bennett
February 1996, The Journal of biological chemistry,
Y Zeng, and R C Rosborough, and Y Li, and A R Gupta, and J Bennett
February 1996, Gene,
Copied contents to your clipboard!