Characterization of AT4 receptor from bovine aortic endothelium with photosensitive analogues of angiotensin IV. 1998

S G Bernier, and J M Bellemare, and E Escher, and G Guillemette
Department of Pharmacology, Faculty of Medicine, Université de Sherbrooke, Québec, Canada.

Newly developed photosensitive analogues of AngIV were used to characterize the AT4 receptor of bovine aortic endothelial cells. The photoactivatable AngIV analogues [N3-Phe6]AngIV and [Bpa6]AngIV displayed high affinities for AT4 receptor, with IC50's of 3.7 +/- 0.3 and 19.1 +/- 3.5 nM, respectively. The radioiodinated ligands showed a good efficiency of photoaffinity labeling demonstrated by high proportions (60-75%) of acid-resistant binding. Covalently labeled receptor was solubilized under reducing or nonreducing conditions and subjected to SDS-PAGE. Under nonreducing conditions, autoradiographies revealed a major band of Mr 186 +/- 2 kDa and a minor band of Mr 241 +/- 6 kDa. The labeling of these bands was completely abolished in the presence of 10 microM AngIV. Under reducing conditions, only the low Mr 186 kDa band was revealed. After endoglycosidase digestion with an enzyme that cleaves N-linked saccharides, the Mr of the denatured AT4 receptor was decreased by 31% to a value of 129 +/- 10 kDa. Kinetic studies revealed a stepwise process of AT4 receptor deglycosylation by endoglycosidase F, suggesting at least two different sites of N-linked saccharides. Mild trypsin treatment of photolabeled endothelial cell membranes released a large fragment of Mr 177 +/- 3 kDa which accounts for about 95% of the whole receptor molecular mass. These results demonstrate that [N3-Phe6]AngIV and [Bpa6]AngIV are very efficient tools for selective photoaffinity labeling of AT4 receptor. We have shown that AT4 receptor is a 186 kDa integral membrane glycoprotein with a very large extracellular domain. These properties are consistent with those of a growth factor or cytokine receptor.

UI MeSH Term Description Entries
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011945 Receptors, Angiotensin Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells. Angiotensin Receptor,Angiotensin Receptors,Angiotensin II Receptor,Angiotensin III Receptor,Receptor, Angiotensin II,Receptor, Angiotensin III,Receptor, Angiotensin
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D006026 Glycoside Hydrolases Any member of the class of enzymes that catalyze the cleavage of the glycosidic linkage of glycosides and the addition of water to the resulting molecules. Endoglycosidase,Exoglycosidase,Glycohydrolase,Glycosidase,Glycosidases,Glycoside Hydrolase,Endoglycosidases,Exoglycosidases,Glycohydrolases,Hydrolase, Glycoside,Hydrolases, Glycoside
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine

Related Publications

S G Bernier, and J M Bellemare, and E Escher, and G Guillemette
May 1999, The Journal of pharmacology and experimental therapeutics,
S G Bernier, and J M Bellemare, and E Escher, and G Guillemette
November 2004, Cellular and molecular life sciences : CMLS,
S G Bernier, and J M Bellemare, and E Escher, and G Guillemette
January 1994, Peptides,
S G Bernier, and J M Bellemare, and E Escher, and G Guillemette
April 2009, Molecular and cellular endocrinology,
S G Bernier, and J M Bellemare, and E Escher, and G Guillemette
October 1998, The Journal of pharmacology and experimental therapeutics,
S G Bernier, and J M Bellemare, and E Escher, and G Guillemette
February 1998, The American journal of physiology,
S G Bernier, and J M Bellemare, and E Escher, and G Guillemette
October 2011, Peptides,
S G Bernier, and J M Bellemare, and E Escher, and G Guillemette
December 1996, Regulatory peptides,
S G Bernier, and J M Bellemare, and E Escher, and G Guillemette
May 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S G Bernier, and J M Bellemare, and E Escher, and G Guillemette
December 1999, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!