Fundamental metabolic differences between hepatocytes and islet beta-cells revealed by glucokinase overexpression. 1998

H K Berman, and C B Newgard
Gifford Laboratories for Diabetes Research, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA.

Adenovirus-mediated overexpression of the glucose phosphorylating enzyme glucokinase causes large changes in glycolytic flux and glucose storage in isolated rat hepatocytes, but not in pancreatic islets. We have used the well-differentiated insulinoma cell line INS-1 to investigate the basis for these apparent cell-type specific differences. We find that 2- or 5-[3H]glucose usage is increased at low (</=5 mM) but not high glucose concentrations in INS-1 cells treated with a recombinant adenovirus containing the glucokinase cDNA (AdCMV-GKI), while glucose usage is increased at both low and high glucose concentrations in similarly treated hepatocytes. Utilization of 2-[3H]glucose in INS-1 cells is suppressed in glucokinase overexpressing INS-1 cells in a rapid, glucose concentration-dependent, and reversible fashion, while such regulation is largely absent in hepatocytes. Levels of hexose phosphates (glucose-6-phosphate, fructose-6-phosphate, and fructose-1,6-bisphosphate) were profoundly and rapidly elevated following the switch to high glucose in either AdCMV-GKI-treated INS-1 cells or hepatocytes relative to controls. In contrast, triose phosphate levels (glyceraldehyde-3-phosphate + dihydroxyacetone phosphate) were much higher in AdCMV-GKI-treated INS-1 cells than in similarly treated hepatocytes, suggesting limited flux throught the glyceraldehyde-3-phosphate dehydrogenase (G3PDH) step in the former cells. Hepatocytes were found to contain approximately 62 times more lactate dehydrogenase (LDH) activity than INS-1 cells, and this was reflected in a 3-fold increase in lactate production in AdCMV-GKI-treated hepatocytes relative to similarly treated INS-1 cells. Since the amounts of G3PDH activity in INS-1 and hepatocyte extracts are similar, we suggest that flux through this step in INS-1 cells is limited by failure to regenerate NAD in the LDH reaction and that a fundamental difference between hepatocytes and islet beta-cells is the limited capacity of the latter to metabolize glycolytic intermediates beyond the G3PDH step.

UI MeSH Term Description Entries
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D005941 Glucokinase A group of enzymes that catalyzes the conversion of ATP and D-glucose to ADP and D-glucose 6-phosphate. They are found in invertebrates and microorganisms, and are highly specific for glucose. (Enzyme Nomenclature, 1992) EC 2.7.1.2.
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D005987 Glyceraldehyde-3-Phosphate Dehydrogenases Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD. GAPD,Glyceraldehyde-3-Phosphate Dehydrogenase,Glyceraldehydephosphate Dehydrogenase,Phosphoglyceraldehyde Dehydrogenase,Triosephosphate Dehydrogenase,Dehydrogenase, Glyceraldehyde-3-Phosphate,Dehydrogenase, Glyceraldehydephosphate,Dehydrogenase, Phosphoglyceraldehyde,Dehydrogenase, Triosephosphate,Dehydrogenases, Glyceraldehyde-3-Phosphate,Glyceraldehyde 3 Phosphate Dehydrogenase

Related Publications

H K Berman, and C B Newgard
April 1997, Proceedings of the National Academy of Sciences of the United States of America,
H K Berman, and C B Newgard
April 2002, American journal of physiology. Endocrinology and metabolism,
H K Berman, and C B Newgard
June 2013, Proceedings of the National Academy of Sciences of the United States of America,
H K Berman, and C B Newgard
March 1993, Proceedings of the National Academy of Sciences of the United States of America,
H K Berman, and C B Newgard
November 1984, Biochemistry international,
Copied contents to your clipboard!