Mechanical strain increases protein tyrosine phosphorylation in airway smooth muscle cells. 1998

P G Smith, and R Garcia, and L Kogerman
Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.

Mechanical stress contributes to normal structure and function of the lung as well as pathology in such diseases as bronchopulmonary dysplasia and adult respiratory distress syndrome. Stress-related increases in airway smooth muscle (ASM) quantity are reflected in vitro where cultured ASM cells respond to cyclic deformational strain with increased proliferation, cell reorientation, protein production, stress fibers, and focal adhesions. To understand the mechanisms of mechanical signaling in ASM cells, we investigated whether strain increased tyrosine phosphorylation of focal adhesion-related proteins. ASM cells were grown to confluence on collagen type I and subjected to 30 min of cyclic deformation strain (2 s of 25% deformation of the substratum, 2 s relaxation) and compared at various time points with identical cells not subjected to strain for phosphotyrosine content of three focal adhesion-concentrated proteins (pp125FAK, paxillin, and talin) by Western blotting. Strain caused a rapid increase in tyrosine phosphorylation of pp125FAK and paxillin. Tyrosine phosphorylation decreased by 4 h in pp125FAK after discontinuing strain but remained elevated in paxillin at 24 h. Increases in tyrosine phosphorylation of talin were not found. In separate studies, when cells were strained in the presence of tyrosine kinase inhibitors (genistein and herbimycin A), strain-induced reorientation and elongation were inhibited. Mechanochemical signal transduction appears to mediate cell morphologic changes through quantitative and possibly qualitative changes in tyrosine phosphorylation of adhesion-related proteins.

UI MeSH Term Description Entries
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D010750 Phosphoproteins Phosphoprotein
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011809 Quinones Hydrocarbon rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups.
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

P G Smith, and R Garcia, and L Kogerman
June 1995, The American journal of physiology,
P G Smith, and R Garcia, and L Kogerman
August 1999, The American journal of physiology,
P G Smith, and R Garcia, and L Kogerman
April 2003, American journal of respiratory cell and molecular biology,
P G Smith, and R Garcia, and L Kogerman
May 2000, American journal of physiology. Cell physiology,
P G Smith, and R Garcia, and L Kogerman
January 1994, American journal of respiratory cell and molecular biology,
P G Smith, and R Garcia, and L Kogerman
November 2000, Journal of applied physiology (Bethesda, Md. : 1985),
P G Smith, and R Garcia, and L Kogerman
January 2001, Anesthesiology,
P G Smith, and R Garcia, and L Kogerman
November 1997, Molecular and cellular biochemistry,
Copied contents to your clipboard!