Beta adrenergic antagonist permeation across cultured rabbit corneal epithelial cells grown on permeable supports. 1998

K Kawazu, and H Shiono, and H Tanioka, and A Ota, and T Ikuse, and H Takashina, and Y Kawashima
Santen Pharmaceutical Co., Ltd. Ophthalmic Laboratories, Ikomo-shi, Japan.

OBJECTIVE To determine whether cultured rabbit corneal epithelial cells (RCEC), grown on permeable supports, provide a suitable in vivo model for characterizing transcellular drug permeation and metabolism. METHODS Primary rabbit corneal epithelial cells grown in DMEM-F12 were seeded on Transwell-COL inserts coated with fibronectin. The epithelial barrier integrity was evaluated, based on measurements of 14C-mannitol and 3H-PEG900, and their transepithelial electrical resistance (TEER). Ultrastructure evaluation was based on scanning electron microscopy and transmission electron microscopy, which were performed 8 days after seeding. Measurements of beta adrenergic antagonist permeability were performed to assess transcellular permeability. RESULTS Eight days after seeding, the TEER reached a peak of 144 omega.cm2 and the 14C-mannitol and 3H-PEG900 permeabilities were 6.8 x 10(-6) and 2.9 x 10(-6) cm/sec, respectively. Ultrastructural analysis revealed a multilayered structure with numerous microplicae and typical cytoplasmic organelles along with desmosomes. The relationship between permeation of beta-blockers and lipophilicity resembled the intact isolated cornea. CONCLUSIONS This is the first description of cultured RCEC grown on permeable support. Many of its properties mimic those described in the intact corneal epithelium. Even though its electrical tightness is less than that of the intact cornea, the transcellular permeability to lipophilic beta-antagonists is comparable to the isolated preparation. Therefore, this model will facilitate characterization of ocular permeation mechanisms of hydrophobic drugs whose route of permeation is transcellular.

UI MeSH Term Description Entries
D008353 Mannitol A diuretic and renal diagnostic aid related to sorbitol. It has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity. (L)-Mannitol,Osmitrol,Osmofundin
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009883 Ophthalmic Solutions Sterile solutions that are intended for instillation into the eye. It does not include solutions for cleaning eyeglasses or CONTACT LENS SOLUTIONS. Eye Drop,Eyedrop,Eyedrops,Ophthalmic Solution,Eye Drops,Drop, Eye,Drops, Eye,Solution, Ophthalmic,Solutions, Ophthalmic
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000319 Adrenergic beta-Antagonists Drugs that bind to but do not activate beta-adrenergic receptors thereby blocking the actions of beta-adrenergic agonists. Adrenergic beta-antagonists are used for treatment of hypertension, cardiac arrhythmias, angina pectoris, glaucoma, migraine headaches, and anxiety. Adrenergic beta-Antagonist,Adrenergic beta-Receptor Blockader,Adrenergic beta-Receptor Blockaders,beta-Adrenergic Antagonist,beta-Adrenergic Blocker,beta-Adrenergic Blocking Agent,beta-Adrenergic Blocking Agents,beta-Adrenergic Receptor Blockader,beta-Adrenergic Receptor Blockaders,beta-Adrenoceptor Antagonist,beta-Blockers, Adrenergic,beta-Adrenergic Antagonists,beta-Adrenergic Blockers,beta-Adrenoceptor Antagonists,Adrenergic beta Antagonist,Adrenergic beta Antagonists,Adrenergic beta Receptor Blockader,Adrenergic beta Receptor Blockaders,Adrenergic beta-Blockers,Agent, beta-Adrenergic Blocking,Agents, beta-Adrenergic Blocking,Antagonist, beta-Adrenergic,Antagonist, beta-Adrenoceptor,Antagonists, beta-Adrenergic,Antagonists, beta-Adrenoceptor,Blockader, Adrenergic beta-Receptor,Blockader, beta-Adrenergic Receptor,Blockaders, Adrenergic beta-Receptor,Blockaders, beta-Adrenergic Receptor,Blocker, beta-Adrenergic,Blockers, beta-Adrenergic,Blocking Agent, beta-Adrenergic,Blocking Agents, beta-Adrenergic,Receptor Blockader, beta-Adrenergic,Receptor Blockaders, beta-Adrenergic,beta Adrenergic Antagonist,beta Adrenergic Antagonists,beta Adrenergic Blocker,beta Adrenergic Blockers,beta Adrenergic Blocking Agent,beta Adrenergic Blocking Agents,beta Adrenergic Receptor Blockader,beta Adrenergic Receptor Blockaders,beta Adrenoceptor Antagonist,beta Adrenoceptor Antagonists,beta Blockers, Adrenergic,beta-Antagonist, Adrenergic,beta-Antagonists, Adrenergic,beta-Receptor Blockader, Adrenergic,beta-Receptor Blockaders, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Kawazu, and H Shiono, and H Tanioka, and A Ota, and T Ikuse, and H Takashina, and Y Kawashima
November 1993, Experimental eye research,
K Kawazu, and H Shiono, and H Tanioka, and A Ota, and T Ikuse, and H Takashina, and Y Kawashima
November 1984, Investigative ophthalmology & visual science,
K Kawazu, and H Shiono, and H Tanioka, and A Ota, and T Ikuse, and H Takashina, and Y Kawashima
August 1983, Investigative ophthalmology & visual science,
K Kawazu, and H Shiono, and H Tanioka, and A Ota, and T Ikuse, and H Takashina, and Y Kawashima
August 1976, Investigative ophthalmology,
K Kawazu, and H Shiono, and H Tanioka, and A Ota, and T Ikuse, and H Takashina, and Y Kawashima
October 1994, The Journal of pharmacology and experimental therapeutics,
K Kawazu, and H Shiono, and H Tanioka, and A Ota, and T Ikuse, and H Takashina, and Y Kawashima
June 1989, Cell and tissue research,
K Kawazu, and H Shiono, and H Tanioka, and A Ota, and T Ikuse, and H Takashina, and Y Kawashima
January 2001, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde,
K Kawazu, and H Shiono, and H Tanioka, and A Ota, and T Ikuse, and H Takashina, and Y Kawashima
January 2002, Advances in experimental medicine and biology,
K Kawazu, and H Shiono, and H Tanioka, and A Ota, and T Ikuse, and H Takashina, and Y Kawashima
June 1989, Cell and tissue research,
K Kawazu, and H Shiono, and H Tanioka, and A Ota, and T Ikuse, and H Takashina, and Y Kawashima
June 1994, Japanese journal of pharmacology,
Copied contents to your clipboard!