Extracellular calcium deprivation in astrocytes: regulation of mRNA expression and apoptosis. 1998

R Chiesa, and N Angeretti, and R Del Bo, and E Lucca, and E Munna, and G Forloni
Biology of Neurodegenerative Disorders Laboratory, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy.

Cell viability and gene expression were studied in primary astroglial cells cultured in a nominally calcium-free medium. Ca2+ deprivation reduced progressively the astrocytes' viability, starting from 12 h; the restoration of a normal Ca2+ concentration (1.8 mM) in the medium after 12-h deprivation reversed the degenerative effect within 24 h. Biochemical and morphological examinations indicated that cell death induced by Ca2+ deprivation was mediated by apoptosis. This was associated with the expression of c-fos, c-jun, and c-myc, which, with different time courses, were induced in astrocytes after Ca2+ deprivation. Furthermore, shifting to a Ca2+-free medium modified the expression of Ich-1S transcript and rapidly increased intracellular cyclic AMP, which has been implicated in the transcriptional activation of immediate-early genes. The absence of Ca2+ in the medium reduced the expression of constitutive proteins such as alpha-actin, clusterin, glial fibrillary acidic protein, amyloid precursor protein, and glucose-6-phosphate dehydrogenase. The expression of these mRNAs was reduced >50% after 8 h of Ca2+ deprivation, when the effect on cell viability was negligible. When Ca2+ deprivation was prolonged for 24 h the expression of mRNA dropped completely, and restoration of the Ca2+ ions in the medium for 48 h did not reverse this effect. In contrast with general assumption, the apoptotic machinery in astrocytes is activated similarly not only by increased Ca2+ influx but also with the extracellular Ca2+ deprivation.

UI MeSH Term Description Entries
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

R Chiesa, and N Angeretti, and R Del Bo, and E Lucca, and E Munna, and G Forloni
June 1994, Molecular and cellular neurosciences,
R Chiesa, and N Angeretti, and R Del Bo, and E Lucca, and E Munna, and G Forloni
September 2001, Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan,
R Chiesa, and N Angeretti, and R Del Bo, and E Lucca, and E Munna, and G Forloni
May 2007, Epilepsy research,
R Chiesa, and N Angeretti, and R Del Bo, and E Lucca, and E Munna, and G Forloni
September 2003, Glia,
R Chiesa, and N Angeretti, and R Del Bo, and E Lucca, and E Munna, and G Forloni
July 1995, Neuroscience letters,
R Chiesa, and N Angeretti, and R Del Bo, and E Lucca, and E Munna, and G Forloni
June 2004, Brain research,
R Chiesa, and N Angeretti, and R Del Bo, and E Lucca, and E Munna, and G Forloni
December 2002, Journal of the American Society of Nephrology : JASN,
R Chiesa, and N Angeretti, and R Del Bo, and E Lucca, and E Munna, and G Forloni
April 1996, Neuroscience,
R Chiesa, and N Angeretti, and R Del Bo, and E Lucca, and E Munna, and G Forloni
August 1991, Brain research. Molecular brain research,
R Chiesa, and N Angeretti, and R Del Bo, and E Lucca, and E Munna, and G Forloni
February 1995, Journal of neuroscience research,
Copied contents to your clipboard!