Reduced activity of topoisomerase II in an Adriamycin-resistant human stomach-adenocarcinoma cell line. 1998

Y S Son, and J M Suh, and S H Ahn, and J C Kim, and J Y Yi, and K C Hur, and W S Hong, and M T Muller, and I K Chung
Laboratory of Cell Biology, Korea Cancer Center Hospital, Seoul.

A human stomach-adenocarcinoma cell line (MKN-45) was selected for resistance to Adriamycin by stepwise exposure to increasing concentrations of this agent. The resulting cell line (MKN/ADR) exhibited a high level of cross-resistance to topoisomerase II (topo II)-targeted drugs such as Adriamycin, mitoxantrone, and etoposide but showed no cross-resistance to other chemotherapeutic agents such as cisplatin, carboplatin, 5-fluorouracil, or mitomycin-C. P-glycoprotein encoded by the mdr-1 gene was not overexpressed in the MKN/ADR cell line. The doubling time of the MKN/ADR cell line (2.1 days) increased only slightly as compared with that of the MKN cell line (1.7 days). The patterns of cross-resistance to various chemotherapeutic agents led us to examine the cellular contents of topo II in both the drug-sensitive and the drug-resistant cells. Extractable topo II enzyme activity was 3-fold lower in MKN/ADR cells as compared with the parental MKN cells. Levels of topoisomerase I (topo I) catalytic activity were similar in both wild-type MKN and drug-resistant MKN/ADR cells. Southern-blot analysis of genomic DNA probed with topo IIalpha or IIbeta showed no sign of either gene rearrangement or hypermethylation. Northern-blot analysis revealed that both topo IIalpha and topo IIbeta mRNA transcripts were essentially identical in the MKN and MKN/ADR cells. In contrast, Western-blot analysis revealed an approximately 20-fold lower level of topo IIalpha in drug-resistant cells as compared with drug-sensitive cells, whereas topo IIbeta levels were similar in both lines. Moreover, the amount of in vivo topo IIalpha-DNA covalent complexes formed in the presence of etoposide was also approximately 20-fold lower in drug-resistant cells. No mutation was detected in the promoter region of the topo IIalpha gene in resistant cells as compared with sensitive cells. Thus, low levels of topo IIalpha polypeptide cannot be ascribed to changes in the mRNA levels. Collectively, the data suggest that a quantitative reduction in topo IIalpha may contribute to the resistance of MKN cells to Adriamycin and other topo II-targeted drugs.

UI MeSH Term Description Entries
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D004264 DNA Topoisomerases, Type I DNA TOPOISOMERASES that catalyze ATP-independent breakage of one of the two strands of DNA, passage of the unbroken strand through the break, and rejoining of the broken strand. DNA Topoisomerases, Type I enzymes reduce the topological stress in the DNA structure by relaxing the superhelical turns and knotted rings in the DNA helix. DNA Nicking-Closing Protein,DNA Relaxing Enzyme,DNA Relaxing Protein,DNA Topoisomerase,DNA Topoisomerase I,DNA Topoisomerase III,DNA Topoisomerase III alpha,DNA Topoisomerase III beta,DNA Untwisting Enzyme,DNA Untwisting Protein,TOP3 Topoisomerase,TOP3alpha,TOPO IIIalpha,Topo III,Topoisomerase III,Topoisomerase III beta,Topoisomerase IIIalpha,Topoisomerase IIIbeta,DNA Nicking-Closing Proteins,DNA Relaxing Enzymes,DNA Type 1 Topoisomerase,DNA Untwisting Enzymes,DNA Untwisting Proteins,Topoisomerase I,Type I DNA Topoisomerase,III beta, Topoisomerase,III, DNA Topoisomerase,III, Topo,III, Topoisomerase,IIIalpha, TOPO,IIIalpha, Topoisomerase,IIIbeta, Topoisomerase,Topoisomerase III, DNA,Topoisomerase, TOP3,beta, Topoisomerase III
D004317 Doxorubicin Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN. Adriamycin,Adriablastin,Adriablastine,Adriblastin,Adriblastina,Adriblastine,Adrimedac,DOXO-cell,Doxolem,Doxorubicin Hexal,Doxorubicin Hydrochloride,Doxorubicin NC,Doxorubicina Ferrer Farm,Doxorubicina Funk,Doxorubicina Tedec,Doxorubicine Baxter,Doxotec,Farmiblastina,Myocet,Onkodox,Ribodoxo,Rubex,Urokit Doxo-cell,DOXO cell,Hydrochloride, Doxorubicin,Urokit Doxo cell
D004794 Enzyme Repression The interference in synthesis of an enzyme due to the elevated level of an effector substance, usually a metabolite, whose presence would cause depression of the gene responsible for enzyme synthesis. Repression, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000230 Adenocarcinoma A malignant epithelial tumor with a glandular organization. Adenocarcinoma, Basal Cell,Adenocarcinoma, Granular Cell,Adenocarcinoma, Oxyphilic,Adenocarcinoma, Tubular,Adenoma, Malignant,Carcinoma, Cribriform,Carcinoma, Granular Cell,Carcinoma, Tubular,Adenocarcinomas,Adenocarcinomas, Basal Cell,Adenocarcinomas, Granular Cell,Adenocarcinomas, Oxyphilic,Adenocarcinomas, Tubular,Adenomas, Malignant,Basal Cell Adenocarcinoma,Basal Cell Adenocarcinomas,Carcinomas, Cribriform,Carcinomas, Granular Cell,Carcinomas, Tubular,Cribriform Carcinoma,Cribriform Carcinomas,Granular Cell Adenocarcinoma,Granular Cell Adenocarcinomas,Granular Cell Carcinoma,Granular Cell Carcinomas,Malignant Adenoma,Malignant Adenomas,Oxyphilic Adenocarcinoma,Oxyphilic Adenocarcinomas,Tubular Adenocarcinoma,Tubular Adenocarcinomas,Tubular Carcinoma,Tubular Carcinomas
D000903 Antibiotics, Antineoplastic Chemical substances, produced by microorganisms, inhibiting or preventing the proliferation of neoplasms. Antineoplastic Antibiotics,Cytotoxic Antibiotics,Antibiotics, Cytotoxic

Related Publications

Y S Son, and J M Suh, and S H Ahn, and J C Kim, and J Y Yi, and K C Hur, and W S Hong, and M T Muller, and I K Chung
January 1990, Cancer research,
Y S Son, and J M Suh, and S H Ahn, and J C Kim, and J Y Yi, and K C Hur, and W S Hong, and M T Muller, and I K Chung
January 1991, Anticancer research,
Y S Son, and J M Suh, and S H Ahn, and J C Kim, and J Y Yi, and K C Hur, and W S Hong, and M T Muller, and I K Chung
August 1993, International journal of oncology,
Y S Son, and J M Suh, and S H Ahn, and J C Kim, and J Y Yi, and K C Hur, and W S Hong, and M T Muller, and I K Chung
January 1995, British journal of cancer,
Y S Son, and J M Suh, and S H Ahn, and J C Kim, and J Y Yi, and K C Hur, and W S Hong, and M T Muller, and I K Chung
January 1990, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Y S Son, and J M Suh, and S H Ahn, and J C Kim, and J Y Yi, and K C Hur, and W S Hong, and M T Muller, and I K Chung
April 2002, Molecules and cells,
Y S Son, and J M Suh, and S H Ahn, and J C Kim, and J Y Yi, and K C Hur, and W S Hong, and M T Muller, and I K Chung
January 1994, Cancer chemotherapy and pharmacology,
Y S Son, and J M Suh, and S H Ahn, and J C Kim, and J Y Yi, and K C Hur, and W S Hong, and M T Muller, and I K Chung
September 1994, Molecular pharmacology,
Y S Son, and J M Suh, and S H Ahn, and J C Kim, and J Y Yi, and K C Hur, and W S Hong, and M T Muller, and I K Chung
January 1994, Biochemical and biophysical research communications,
Y S Son, and J M Suh, and S H Ahn, and J C Kim, and J Y Yi, and K C Hur, and W S Hong, and M T Muller, and I K Chung
December 1998, Cancer research,
Copied contents to your clipboard!