CYP3A4-mediated oxidation of lisofylline to lisofylline 4,5-diol in human liver microsomes. 1998

H S Shin, and J T Slattery
Department of Pharmaceutics, University of Washington, Seattle 98195, USA.

The cytochrome P450s responsible for the conversion of lisofylline, a drug being developed to prevent the complications of high-dose chemotherapy, to lisofylline 4,5-diol, one of two principal metabolites in human liver microsomes, were evaluated. Lisofylline diol formation in microsomes prepared from five adult human livers was biphasic, with respective Km values of 0.0230+/-0.015 and 4.23+/-2.8 mM (mean +/- SD) and respective Vmax values of 0.0565+/-0.052 and 0.429+/-0.15 nmol/min/mg of protein. Through studies with isoform selective chemical inhibitors, CYP3A4 was implicated as the low Km enzyme from 89.0+/-11.2% inhibition of lisofylline 4,5-diol formation by troleandomycin at 50 microM substrate and CYP2A6 was implicated as the high Km enzyme. The formation of lisofylline 4,5-diol by these enzymes was confirmed with cDNA-expressed human CYP3A4 and CYP2A6.

UI MeSH Term Description Entries
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010431 Pentoxifylline A METHYLXANTHINE derivative that inhibits phosphodiesterase and affects blood rheology. It improves blood flow by increasing erythrocyte and leukocyte flexibility. It also inhibits platelet aggregation. Pentoxifylline modulates immunologic activity by stimulating cytokine production. Agapurin,BL-191,Oxpentifylline,Pentoxil,Torental,Trental,BL 191,BL191
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D051544 Cytochrome P-450 CYP3A A cytochrome P-450 suptype that has specificity for a broad variety of lipophilic compounds, including STEROIDS; FATTY ACIDS; and XENOBIOTICS. This enzyme has clinical significance due to its ability to metabolize a diverse array of clinically important drugs such as CYCLOSPORINE; VERAPAMIL; and MIDAZOLAM. This enzyme also catalyzes the N-demethylation of ERYTHROMYCIN. CYP3A,CYP3A4,CYP3A5,Cytochrome P-450 CYP3A4,Cytochrome P-450 CYP3A5,Cytochrome P-450IIIA,Cytochrome P450 3A,Cytochrome P450 3A4,Cytochrome P450 3A5,Erythromycin N-Demethylase,Taurochenodeoxycholate 6-alpha-Monooxygenase,3A5, Cytochrome P450,6-alpha-Monooxygenase, Taurochenodeoxycholate,Cytochrome P 450 CYP3A,Cytochrome P 450 CYP3A4,Cytochrome P 450 CYP3A5,Cytochrome P 450IIIA,Erythromycin N Demethylase,N-Demethylase, Erythromycin,P-450 CYP3A, Cytochrome,P-450 CYP3A4, Cytochrome,P-450 CYP3A5, Cytochrome,P-450IIIA, Cytochrome,P450 3A, Cytochrome,P450 3A5, Cytochrome,Taurochenodeoxycholate 6 alpha Monooxygenase
D065607 Cytochrome P-450 Enzyme Inhibitors Drugs and compounds which inhibit or antagonize the biosynthesis or actions of CYTOCHROME P-450 ENZYMES. Cytochrome P-450 Inhibitors,Cytochrome P-450 Monooxygenase Inhibitors,Cytochrome P-450 Oxygenase Inhibitors,Cytochrome P-450-Dependent Monooxygenase Inhibitors,P-450 Enzyme Inhibitors,P450 Enzyme Inhibitors,Cytochrome P 450 Dependent Monooxygenase Inhibitors,Cytochrome P 450 Enzyme Inhibitors,Cytochrome P 450 Inhibitors,Cytochrome P 450 Monooxygenase Inhibitors,Cytochrome P 450 Oxygenase Inhibitors,Enzyme Inhibitors, P-450,Enzyme Inhibitors, P450,Inhibitors, Cytochrome P-450,Inhibitors, P-450 Enzyme,Inhibitors, P450 Enzyme,P 450 Enzyme Inhibitors,P-450 Inhibitors, Cytochrome

Related Publications

H S Shin, and J T Slattery
January 2007, Acta pharmacologica Sinica,
H S Shin, and J T Slattery
November 1996, Drug metabolism and disposition: the biological fate of chemicals,
H S Shin, and J T Slattery
December 1997, Drug metabolism and disposition: the biological fate of chemicals,
H S Shin, and J T Slattery
May 2002, Drug metabolism and disposition: the biological fate of chemicals,
H S Shin, and J T Slattery
January 2016, Drug metabolism letters,
H S Shin, and J T Slattery
December 1987, The Journal of pharmacy and pharmacology,
H S Shin, and J T Slattery
October 1999, Xenobiotica; the fate of foreign compounds in biological systems,
H S Shin, and J T Slattery
March 2015, European journal of drug metabolism and pharmacokinetics,
Copied contents to your clipboard!