Synaptic modulation of oscillatory activity of hypothalamic neuronal networks in vitro. 1998

U Misgeld, and H U Zeilhofer, and D Swandulla
I. Physiologisches Institut, Universität Heidelberg, Germany.

1. Rhythmic bursts of action potentials in neurosecretory cells are a key factor in hypothalamic neurosecretion. Rhythmicity and synchronization may be accomplished by pacemaker cells synaptically driving follower cells or by a network oscillator. 2. In this review we describe a hypothalamic cell culture which may serve as a model for a hypothalamic network oscillator. An overview is given of neurochemical phenotypes, synaptic mechanisms and their development, properties of receptors for fast synaptic transmission, and membrane properties of cells in dissociated rat embryonic hypothalamic culture. 3. Rhythmic activity spreads in the cultured network through synapses that release glutamate, activating a heteromultimeric AMPA-type receptor containing a GluR2 subunit which is associated with a high-conductance channel for Na+ and K+. Rhythmic activity is controlled by synapses that release GABA to activate GABAA receptors. The presumed function of the two receptor types is facilitated by their respective location, GABAA receptors predominating near the soma and AMPA receptors being abundant in dendrites. 4. Network oscillators may be more reliable for the presumed function than single-cell oscillators. They are controlled through synaptic modulation, which may prove to represent a process important for the release of hormones.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D009415 Nerve Net A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction. Neural Networks (Anatomic),Nerve Nets,Net, Nerve,Nets, Nerve,Network, Neural (Anatomic),Networks, Neural (Anatomic),Neural Network (Anatomic)
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001683 Biological Clocks The physiological mechanisms that govern the rhythmic occurrence of certain biochemical, physiological, and behavioral phenomena. Biological Oscillators,Oscillators, Endogenous,Pacemakers, Biological,Biologic Clock,Biologic Oscillator,Biological Pacemakers,Clock, Biologic,Clocks, Biological,Oscillator, Biologic,Oscillators, Biological,Pacemaker, Biologic,Pacemakers, Biologic,Biologic Clocks,Biologic Oscillators,Biologic Pacemaker,Biologic Pacemakers,Biological Clock,Biological Oscillator,Biological Pacemaker,Clock, Biological,Clocks, Biologic,Endogenous Oscillator,Endogenous Oscillators,Oscillator, Biological,Oscillator, Endogenous,Oscillators, Biologic,Pacemaker, Biological

Related Publications

U Misgeld, and H U Zeilhofer, and D Swandulla
June 1997, Journal of neurophysiology,
U Misgeld, and H U Zeilhofer, and D Swandulla
July 2005, Proceedings of the National Academy of Sciences of the United States of America,
U Misgeld, and H U Zeilhofer, and D Swandulla
May 2023, Neuroscience bulletin,
U Misgeld, and H U Zeilhofer, and D Swandulla
June 2007, Physical biology,
U Misgeld, and H U Zeilhofer, and D Swandulla
April 2015, Cell reports,
U Misgeld, and H U Zeilhofer, and D Swandulla
November 1998, Cell biology international,
U Misgeld, and H U Zeilhofer, and D Swandulla
April 2014, Biological cybernetics,
U Misgeld, and H U Zeilhofer, and D Swandulla
February 1995, Journal of neurophysiology,
U Misgeld, and H U Zeilhofer, and D Swandulla
May 2005, Biomaterials,
U Misgeld, and H U Zeilhofer, and D Swandulla
January 2007, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!