Generation of a mutant infectious bursal disease virus that does not cause bursal lesions. 1998

K Yao, and M A Goodwin, and V N Vakharia
University of Maryland Biotechnology Institute, and VA-MD Regional College of Veterinary Medicine, University of Maryland, College Park 20742, USA.

A reverse genetics system for birnavirus, based on synthetic transcripts of the infectious bursal disease virus (IBDV) genome, was recently developed (E. Mundt and V. N. Vakharia, Proc. Natl. Acad. Sci. USA 93:11131-11136, 1996). To study the function of the 17-kDa nonstructural (NS) protein in viral growth and pathogenesis, we constructed a cDNA clone of IBDV segment A in which the first and only initiation codon (ATG) of NS protein was mutated to a stop codon (TAG). Transfection of Vero cells with combined transcripts of either modified or unmodified segment A, and with segment B, generated viable IBDV progeny. When chicken embryo fibroblast cells infected with transfectant viruses were analyzed by immunofluorescence assays using NS-specific antiserum, the mutant virus did not yield a fluorescence signal, indicating a lack of NS protein expression. Furthermore, replication kinetics and cytotoxic effects of the mutant virus were compared with those of the parental attenuated vaccine strain of IBDV (D78) in vitro. The mutant virus grew to slightly lower titers than D78 virus and exhibited decreased cytotoxic and apoptotic effects in cell culture. To evaluate the characteristics of the recovered viruses in vivo, we inoculated 3-week-old chickens with D78 or mutant virus and analyzed their bursa for histopathological lesions. The recovered D78 virus caused microscopic lesions and atrophy of the bursa, while the mutant virus failed to induce any pathological lesions or clinical signs of disease. In both instances, the virus was recovered from the bursa, and the presence or absence of mutation in these viruses was confirmed by nucleotide sequence analysis of NS gene. Although the mutant virus exhibited a delay in replication in vivo, it induced levels of IBDV neutralizing antibodies that were similar to those of D78 virus. In addition, no reversion of mutation was detected in the mutant virus recovered from inoculated chickens. These results demonstrate that NS protein is dispensable for viral replication in vitro and in vivo and that it plays an important role in viral pathogenesis. Thus, generation of such NS protein-deficient virus will facilitate the study of immunosuppression and aid in the development of live-attenuated vaccines for IBDV.

UI MeSH Term Description Entries
D007243 Infectious bursal disease virus A species of AVIBIRNAVIRUS causing severe inflammation of the bursa of Fabricius in chickens and other fowl. Transmission is thought to be through contaminated feed or water. Vaccines have been used with varying degrees of success. Avian Nephrosis Virus,Gumboro Disease Virus,IBDV,Infectious Bursal Agent,Bursal Agent, Infectious,Bursal Disease Virus, Infectious,Avian Nephrosis Viruses,Bursal Agents, Infectious,Infectious Bursal Agents,Nephrosis Virus, Avian,Nephrosis Viruses, Avian
D002060 Bursa of Fabricius An epithelial outgrowth of the cloaca in birds similar to the thymus in mammals. It atrophies within 6 months after birth and remains as a fibrous remnant in adult birds. It is composed of lymphoid tissue and prior to involution, is the site of B-lymphocyte maturation. Fabricius Bursa
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014709 Vero Cells A CELL LINE derived from the kidney of the African green (vervet) monkey, (CHLOROCEBUS AETHIOPS) used primarily in virus replication studies and plaque assays. Cell, Vero,Cells, Vero,Vero Cell
D016296 Mutagenesis Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS. Mutageneses
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

K Yao, and M A Goodwin, and V N Vakharia
January 1997, Archives of virology,
K Yao, and M A Goodwin, and V N Vakharia
January 1980, Current topics in microbiology and immunology,
K Yao, and M A Goodwin, and V N Vakharia
January 1994, Avian diseases,
K Yao, and M A Goodwin, and V N Vakharia
January 1979, Archives of virology,
K Yao, and M A Goodwin, and V N Vakharia
October 1974, Journal of virology,
K Yao, and M A Goodwin, and V N Vakharia
November 2005, Journal of virology,
K Yao, and M A Goodwin, and V N Vakharia
September 2015, Virology,
Copied contents to your clipboard!