B-lymphocyte proliferation during bovine leukemia virus-induced persistent lymphocytosis is enhanced by T-lymphocyte-derived interleukin-2. 1998

E S Trueblood, and W C Brown, and G H Palmer, and W C Davis, and D M Stone, and T F McElwain
Department of Veterinary Microbiology and Pathology, Washington State University, Pullman 99164, USA. est@vetmed.wsu.edu

Bovine leukemia virus (BLV)-induced persistent lymphocytosis is characterized by a polyclonal expansion of CD5+ B lymphocytes. To examine the role of the cytokine microenvironment in this virus-induced B-lymphocyte expansion, the expression of interleukin-2 (IL-2), IL-4, IL-10, and gamma interferon (IFN-gamma) mRNA, was measured in stimulated peripheral blood mononuclear cells from persistently lymphocytotic BLV-infected cows, nonlymphocytotic BLV-infected cows, and uninfected cows. IL-2 and IL-10 mRNA expression and IL-2 functional activity were significantly increased when peripheral blood mononuclear cells from persistently lymphocytotic cows were stimulated with concanavalin A (ConA). Additionally, during persistent lymphocytosis, peak IL-2 and IL-10 mRNA expression was delayed, and elevated expression was prolonged. To determine the potential biologic importance of increased IL-2 and IL-10 expression, the response of isolated B lymphocytes from persistently lymphocytotic cows to human recombinant cytokines and to cytokine-containing supernatants from isolated T lymphocytes was examined. While recombinant human IL-10 (rhIL-10) did not consistently induce detectable changes, rhIL-2 increased viral protein (p24) and IL-2 receptor expression in isolated B lymphocytes from persistently lymphocytotic cows. Additionally, rhIL-2 and supernatant from ConA-stimulated T lymphocytes enhanced B-lymphocyte proliferation. The stimulatory activity of the T-lymphocyte supernatant could be completely inhibited with a polyclonal anti-rhIL-2 antibody. Finally, polyclonal anti-rhIL-2 antibody, as well as anti-BLV antibody, inhibited spontaneous proliferation of peripheral blood mononuclear cells from persistently lymphocytotic cows, demonstrating that the spontaneous lymphoproliferation characteristic of BLV-induced persistent lymphocytosis is IL-2 dependent and antigen dependent. Collectively, these findings strongly suggest that increased T-lymphocyte expression of IL-2 in BLV-infected cows contributes to development and/or maintenance of persistent B lymphocytosis.

UI MeSH Term Description Entries
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007963 Leukocytes, Mononuclear Mature LYMPHOCYTES and MONOCYTES transported by the blood to the body's extravascular space. They are morphologically distinguishable from mature granulocytic leukocytes by their large, non-lobed nuclei and lack of coarse, heavily stained cytoplasmic granules. Mononuclear Leukocyte,Mononuclear Leukocytes,PBMC Peripheral Blood Mononuclear Cells,Peripheral Blood Human Mononuclear Cells,Peripheral Blood Mononuclear Cell,Peripheral Blood Mononuclear Cells,Leukocyte, Mononuclear
D008218 Lymphocytosis Excess of normal lymphocytes in the blood or in any effusion. Lymphocytoses
D008934 Mitogens Substances that stimulate mitosis and lymphocyte transformation. They include not only substances associated with LECTINS, but also substances from streptococci (associated with streptolysin S) and from strains of alpha-toxin-producing staphylococci. (Stedman, 25th ed) Mitogen,Phytomitogen,Phytomitogens
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001909 Leukemia Virus, Bovine The type species of DELTARETROVIRUS that causes a form of bovine lymphosarcoma (ENZOOTIC BOVINE LEUKOSIS) or persistent lymphocytosis. BLV,Bovine Leukemia Virus,Cattle Leukemia Virus,Leukemia Virus, Cattle,Virus, Bovine Leukemia,Virus, Cattle Leukemia
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

E S Trueblood, and W C Brown, and G H Palmer, and W C Davis, and D M Stone, and T F McElwain
January 2011, The Journal of veterinary medical science,
E S Trueblood, and W C Brown, and G H Palmer, and W C Davis, and D M Stone, and T F McElwain
December 1996, Journal of immunological methods,
E S Trueblood, and W C Brown, and G H Palmer, and W C Davis, and D M Stone, and T F McElwain
September 2000, Clinical immunology (Orlando, Fla.),
E S Trueblood, and W C Brown, and G H Palmer, and W C Davis, and D M Stone, and T F McElwain
December 2021, The Journal of veterinary medical science,
E S Trueblood, and W C Brown, and G H Palmer, and W C Davis, and D M Stone, and T F McElwain
February 1989, Nihon juigaku zasshi. The Japanese journal of veterinary science,
E S Trueblood, and W C Brown, and G H Palmer, and W C Davis, and D M Stone, and T F McElwain
May 1998, Journal of virology,
E S Trueblood, and W C Brown, and G H Palmer, and W C Davis, and D M Stone, and T F McElwain
December 1994, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
E S Trueblood, and W C Brown, and G H Palmer, and W C Davis, and D M Stone, and T F McElwain
October 2004, Cytokine,
E S Trueblood, and W C Brown, and G H Palmer, and W C Davis, and D M Stone, and T F McElwain
August 1981, Nihon rinsho. Japanese journal of clinical medicine,
E S Trueblood, and W C Brown, and G H Palmer, and W C Davis, and D M Stone, and T F McElwain
December 1993, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!