The action of DNA ligase at abasic sites in DNA. 1998

D F Bogenhagen, and K G Pinz
Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794-8651, USA. dan@pharm.sunysb.edu

Apurinic/apyrimidinic (AP) sites occur frequently in DNA as a result of spontaneous base loss or following removal of a damaged base by a DNA glycosylase. The action of many AP endonuclease enzymes at abasic sites in DNA leaves a 5'-deoxyribose phosphate (dRP) residue that must be removed during the base excision repair process. This 5'-dRP group may be removed by AP lyase enzymes that employ a beta-elimination mechanism. This beta-elimination reaction typically involves a transient Schiff base intermediate that can react with sodium borohydride to trap the DNA-enzyme complex. With the use of this assay as well as direct 5'-dRP group release assays, we show that T4 DNA ligase, a representative ATP-dependent DNA ligase, contains AP lyase activity. The AP lyase activity of T4 DNA ligase is inhibited in the presence of ATP, suggesting that the adenylated lysine residue is part of the active site for both the ligase and lyase activities. A model is proposed whereby the AP lyase activity of DNA ligase may contribute to the repair of abasic sites in DNA.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011088 DNA Ligases Poly(deoxyribonucleotide):poly(deoxyribonucleotide)ligases. Enzymes that catalyze the joining of preformed deoxyribonucleotides in phosphodiester linkage during genetic processes during repair of a single-stranded break in duplex DNA. The class includes both EC 6.5.1.1 (ATP) and EC 6.5.1.2 (NAD). DNA Joinases,DNA Ligase,Polydeoxyribonucleotide Ligases,Polydeoxyribonucleotide Synthetases,T4 DNA Ligase,DNA Ligase, T4,Joinases, DNA,Ligase, DNA,Ligase, T4 DNA,Ligases, DNA,Ligases, Polydeoxyribonucleotide,Synthetases, Polydeoxyribonucleotide
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D014981 Xenopus An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.

Related Publications

D F Bogenhagen, and K G Pinz
January 2014, Methods in molecular biology (Clifton, N.J.),
D F Bogenhagen, and K G Pinz
January 2005, Methods in molecular biology (Clifton, N.J.),
D F Bogenhagen, and K G Pinz
July 2019, Nature chemistry,
D F Bogenhagen, and K G Pinz
January 2013, Structure (London, England : 1993),
D F Bogenhagen, and K G Pinz
October 2003, Mutation research,
D F Bogenhagen, and K G Pinz
October 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
D F Bogenhagen, and K G Pinz
January 2001, Biochemistry,
D F Bogenhagen, and K G Pinz
September 2015, Journal of the American Chemical Society,
D F Bogenhagen, and K G Pinz
January 1999, Methods in molecular biology (Clifton, N.J.),
D F Bogenhagen, and K G Pinz
February 2000, Journal of biomolecular structure & dynamics,
Copied contents to your clipboard!