N- and P/Q-type Ca2+ channels mediate transmitter release with a similar cooperativity at rat hippocampal autapses. 1998

C A Reid, and J M Bekkers, and J D Clements
Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra ACT 0200, Australia.

The relationship between extracellular Ca2+ concentration and EPSC amplitude was investigated at excitatory autapses on cultured hippocampal neurons. This relationship was steeply nonlinear, implicating the cooperative involvement of several Ca2+ ions in the release of each vesicle of transmitter. The cooperativity was estimated to be 3.1 using a power function fit and 3.3 using a Hill equation fit. However, simulations suggest that these values underestimate the true cooperativity. The role of different Ca2+ channel subtypes in shaping the Ca2+ dose-response relationship was studied using the selective Ca2+ channel blockers omega-agatoxin GIVA (omega-Aga), which blocks P/Q-type channels, and omega-conotoxin GVIA (omega-CTx), which blocks N-type channels. Both blockers broadened the dose-response relationship, and the Hill coefficient was reduced to 2.5 by omega-Aga and to 2.6 by omega-CTx. This broadening is consistent with a nonuniform distribution of Ca2+ channel subtypes across presynaptic terminals. The similar Hill coefficients in omega-Aga or omega-CTx suggest that there was no difference in the degree of cooperativity for transmitter release mediated via N- or P/Q-type Ca2+ channels. A model of the role of calcium in transmitter release is developed. It is based on a modified Dodge-Rahamimoff equation that includes a nonlinear relationship between extracellular and intracellular Ca2+ concentration, has a cooperativity of 4, and incorporates a nonuniform distribution of Ca2+ channel subtypes across presynaptic terminals. The model predictions are consistent with all of the results reported in this study.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C A Reid, and J M Bekkers, and J D Clements
June 2002, The European journal of neuroscience,
C A Reid, and J M Bekkers, and J D Clements
May 1994, Proceedings of the National Academy of Sciences of the United States of America,
C A Reid, and J M Bekkers, and J D Clements
February 2015, Neurology,
C A Reid, and J M Bekkers, and J D Clements
January 1996, Brain research bulletin,
C A Reid, and J M Bekkers, and J D Clements
March 2006, Cerebral cortex (New York, N.Y. : 1991),
C A Reid, and J M Bekkers, and J D Clements
December 2013, Nature neuroscience,
C A Reid, and J M Bekkers, and J D Clements
July 1997, Journal of neurophysiology,
Copied contents to your clipboard!