Adaptations in control of blood flow with training: splanchnic and renal blood flows. 1998

R M McAllister
Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia 65211, USA.

Acute exercise is associated with large increases in cardiac and active skeletal muscle blood flows and reduced blood flows to inactive muscle, skin, kidneys, and organs served by the splanchnic circulation. Splanchnic and renal blood flows are reduced in proportion to relative exercise intensity. Increased sympathetic nervous system outflow to splanchnic and renal vasculature appears to be the primary mediator of reduced blood flows in these circulations, but the vasoconstrictors angiotensin II and vasopressin also make important contributions. Human and animal studies have shown that splanchnic and renal blood flows are reduced less from resting levels during acute exercise after a period of endurance exercise training. Investigations of mechanisms involved in these adaptations suggest that reductions in sympathetic nervous system outflow, and plasma angiotensin II and vasopressin concentrations, are involved in lesser splanchnic and renal vasoconstriction exhibited by trained individuals. In addition, a reduced response to the sympathetic neurotransmitter norepinephrine in renal vasculature may contribute to greater blood flow to the kidney during acute exercise after training. Greater splanchnic and renal blood flows during acute exercise following training are potentially beneficial in that disturbance from homeostasis would be less in the trained state. Additionally, increased splanchnic blood flow in the trained state may confer benefits for glucose metabolism during prolonged exercise.

UI MeSH Term Description Entries
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D012079 Renal Circulation The circulation of the BLOOD through the vessels of the KIDNEY. Kidney Circulation,Renal Blood Flow,Circulation, Kidney,Circulation, Renal,Blood Flow, Renal,Flow, Renal Blood
D002302 Cardiac Output The volume of BLOOD passing through the HEART per unit of time. It is usually expressed as liters (volume) per minute so as not to be confused with STROKE VOLUME (volume per beat). Cardiac Outputs,Output, Cardiac,Outputs, Cardiac
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013152 Splanchnic Circulation The circulation of blood through the BLOOD VESSELS supplying the abdominal VISCERA. Mesenteric Circulation,Circulation, Mesenteric,Circulation, Splanchnic,Circulations, Mesenteric,Circulations, Splanchnic,Mesenteric Circulations,Splanchnic Circulations
D013564 Sympathetic Nervous System The thoracolumbar division of the autonomic nervous system. Sympathetic preganglionic fibers originate in neurons of the intermediolateral column of the spinal cord and project to the paravertebral and prevertebral ganglia, which in turn project to target organs. The sympathetic nervous system mediates the body's response to stressful situations, i.e., the fight or flight reactions. It often acts reciprocally to the parasympathetic system. Nervous System, Sympathetic,Nervous Systems, Sympathetic,Sympathetic Nervous Systems,System, Sympathetic Nervous,Systems, Sympathetic Nervous
D014661 Vasoconstriction The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE. Vasoconstrictions

Related Publications

R M McAllister
March 1985, The American journal of physiology,
R M McAllister
July 1995, Journal of applied physiology (Bethesda, Md. : 1985),
R M McAllister
September 1986, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
R M McAllister
January 1986, Journal of clinical ultrasound : JCU,
R M McAllister
April 2014, European journal of applied physiology,
R M McAllister
April 2003, Anesthesia and analgesia,
Copied contents to your clipboard!