Characterization of L-arginine uptake by plasma membrane vesicles isolated from cultured pulmonary artery endothelial cells. 1998

S I Zharikov, and E R Block
Research Service, VA Medical Center, Gainesville, FL, USA.

We investigated the mechanisms of [3H]-L-arginine transport via System Y+ using plasma membrane vesicles derived from cultured pulmonary artery endothelial cells. [3H]-L-arginine uptake into plasma membrane vesicles was Na-independent, sensitive to trans-stimulation, unaffected by proton-conducting ionophores, and selectively inhibited by cationic amino acids. Kinetic experiments performed over a wide range of substrate concentrations revealed only one population of L-arginine transporters with Km = 130 microM. To elucidate the driving force for L-arginine transport, we measured [3H]-L-arginine uptake by plasma membrane vesicles at different transmembrane ion gradients. Plasma membrane vesicles accumulated [3H]-L-arginine only when a membrane potential was imposed across the vesicles, and the velocity of uptake was linearly related to the magnitude of the created membrane potential. The presence of potassium ions inside the vesicles was not essential for uptake of L-arginine into vesicles, but it was essential for trans-stimulation of L-arginine transport. [3H]-L-arginine accumulated in plasma membrane vesicles can be released by agents that dissipate transmembrane potassium gradients (e.g. saponin, gramicidin, and nigericin). Diazoxide and pinacidil, activators of K(+)-channels, had no significant effect on [3H]-L-arginine uptake, whereas tetraethylammonium chloride, 4-aminopyridine, and glibenclamide, inhibitors of K(+)-channels, caused decreases in [3H]-L-arginine transport by plasma membrane vesicles. This study demonstrates for the first time a specific role for potassium ions in the mechanism of L-arginine transport, particularly in the phenomenon of trans-stimulation.

UI MeSH Term Description Entries
D007476 Ionophores Chemical agents that increase the permeability of biological or artificial lipid membranes to specific ions. Most ionophores are relatively small organic molecules that act as mobile carriers within membranes or coalesce to form ion permeable channels across membranes. Many are antibiotics, and many act as uncoupling agents by short-circuiting the proton gradient across mitochondrial membranes. Ionophore
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011651 Pulmonary Artery The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs. Arteries, Pulmonary,Artery, Pulmonary,Pulmonary Arteries
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001120 Arginine An essential amino acid that is physiologically active in the L-form. Arginine Hydrochloride,Arginine, L-Isomer,DL-Arginine Acetate, Monohydrate,L-Arginine,Arginine, L Isomer,DL Arginine Acetate, Monohydrate,Hydrochloride, Arginine,L Arginine,L-Isomer Arginine,Monohydrate DL-Arginine Acetate
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

S I Zharikov, and E R Block
November 1995, The American journal of physiology,
S I Zharikov, and E R Block
April 1993, The American journal of physiology,
S I Zharikov, and E R Block
November 1995, The American journal of physiology,
S I Zharikov, and E R Block
April 1991, The American journal of physiology,
S I Zharikov, and E R Block
August 1981, Archives of biochemistry and biophysics,
S I Zharikov, and E R Block
September 1990, British journal of pharmacology,
Copied contents to your clipboard!