Preparation of inside-out vesicles of pig lymphocyte plasma membrane. 1976

F S Walsh, and B H Barber, and M J Crumpton

Between 30 and 50% of pig lymphocyte plasma membrane vesicles were not bound by concanavalin A (Con A)-Sepharose. Various results suggest that the Con A-unretarded fraction represents "inside-out" membrane vesicles. First, an alternative cell surface ligand, anti-lymphocytic serum, gave a similar fractionation to Con A. Second, lack of binding by Con A was not due to lack of carbohydrate or to masking of carbohydrate by extraneous protein, because the unfractionated membrane and the unretarded fraction had similar carbohydrate and polypeptide compositions. Third although the carbohydrate of the unretarded membrane vesicles was accessible to 125I-labelled Con A and to release by soluble trypsin, it was not accessible to ferritin-Con A or trypsin-Sepharose. Fourth, antisera against the external surface of the Con A-unretarded vesicles strongly agglutinated the unretarded membrane, but caused negligible agglutination of whole lymphocytes. When attached to Sepharose these antisera bound all of the Con A-unretarded fraction, but failed to bind the membrane that adhered to Con A-Sepharose.

UI MeSH Term Description Entries
D007294 Inositol An isomer of glucose that has traditionally been considered to be a B vitamin although it has an uncertain status as a vitamin and a deficiency syndrome has not been identified in man. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1379) Inositol phospholipids are important in signal transduction. Myoinositol,Chiro-Inositol,Mesoinositol,Chiro Inositol
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
D006595 Hexosamines AMINO SUGARS created by adding an amine group to a hexose sugar. Hexosamine
D006601 Hexoses MONOSACCHARIDES whose molecules contain six carbon atoms, such as GLUCOSE and FRUCTOSE. They generally have the chemical formula C6H12O6. Hexose

Related Publications

F S Walsh, and B H Barber, and M J Crumpton
July 1980, The Biochemical journal,
F S Walsh, and B H Barber, and M J Crumpton
April 1970, Science (New York, N.Y.),
F S Walsh, and B H Barber, and M J Crumpton
May 1982, Biochemical and biophysical research communications,
F S Walsh, and B H Barber, and M J Crumpton
June 1986, Biochimica et biophysica acta,
F S Walsh, and B H Barber, and M J Crumpton
September 1978, Biochimica et biophysica acta,
Copied contents to your clipboard!