Timing of recombinant human granulocyte colony-stimulating factor administration on neutropenia induced by cyclophosphamide in normal mice. 1998

M Misaki, and Y Ueyama, and G Tsukamoto, and T Matsumura
Department of Oral and Maxillofacial Surgery II, Okayama University Dental School, Japan.

The effects of altering the timing of recombinant human granulocyte colony-stimulating factor (rhG-CSF) administration on neutropenia induced by cyclophosphamide (CPA) were studied experimentally in a mouse model. Experimental mice were divided into three groups: (a) treatment with rhG-CSF after CPA administration (post-treatment group); (b) treatment with rhG-CSF both before and after CPA administration (pre- and post-treatment group); and (c) treatment with saline after CPA administration (control group). The results were as follows. Mice receiving rhG-CSF on the 2 days preceding CPA treatment, in which progenitor cell counts outside the S-phase when CPA was administered were the lowest of all the groups, showed accelerated neutrophil recovery but decreased neutrophil nadirs compared with the control group despite rhG-CSF treatment. The pre- and post-treatment group, consisting of mice who received rhG-CSF treatment on days -4 and -3 before CPA treatment, and in which progenitor cell counts when CPA was administered were increased to greater levels than in the other groups, showed remarkably accelerated neutrophil recovery and the greatest increase in the neutrophil nadirs of all the groups. These results suggested that the kinetics of progenitor cell populations when chemotherapeutic agents were administered seemed to play an important role in neutropenia after chemotherapy, and that not only peripheral neutrophil cell and total progenitor cell counts but also progenitor cell kinetics should be taken into consideration when administering rhG-CSF treatment against the effects of chemotherapy.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009503 Neutropenia A decrease in the number of NEUTROPHILS found in the blood. Neutropenias
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003520 Cyclophosphamide Precursor of an alkylating nitrogen mustard antineoplastic and immunosuppressive agent that must be activated in the LIVER to form the active aldophosphamide. It has been used in the treatment of LYMPHOMA and LEUKEMIA. Its side effect, ALOPECIA, has been used for defleecing sheep. Cyclophosphamide may also cause sterility, birth defects, mutations, and cancer. (+,-)-2-(bis(2-Chloroethyl)amino)tetrahydro-2H-1,3,2-oxazaphosphorine 2-Oxide Monohydrate,B-518,Cyclophosphamide Anhydrous,Cyclophosphamide Monohydrate,Cyclophosphamide, (R)-Isomer,Cyclophosphamide, (S)-Isomer,Cyclophosphane,Cytophosphan,Cytophosphane,Cytoxan,Endoxan,NSC-26271,Neosar,Procytox,Sendoxan,B 518,B518,NSC 26271,NSC26271
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004334 Drug Administration Schedule Time schedule for administration of a drug in order to achieve optimum effectiveness and convenience. Administration Schedule, Drug,Administration Schedules, Drug,Drug Administration Schedules,Schedule, Drug Administration,Schedules, Drug Administration
D005260 Female Females

Related Publications

M Misaki, and Y Ueyama, and G Tsukamoto, and T Matsumura
August 2011, Veterinary immunology and immunopathology,
M Misaki, and Y Ueyama, and G Tsukamoto, and T Matsumura
June 1991, Fukushima journal of medical science,
M Misaki, and Y Ueyama, and G Tsukamoto, and T Matsumura
January 1990, Life sciences,
M Misaki, and Y Ueyama, and G Tsukamoto, and T Matsumura
January 1992, Medical and pediatric oncology,
M Misaki, and Y Ueyama, and G Tsukamoto, and T Matsumura
April 1987, The Journal of experimental medicine,
M Misaki, and Y Ueyama, and G Tsukamoto, and T Matsumura
June 2008, Southern medical journal,
M Misaki, and Y Ueyama, and G Tsukamoto, and T Matsumura
February 1990, [Rinsho ketsueki] The Japanese journal of clinical hematology,
M Misaki, and Y Ueyama, and G Tsukamoto, and T Matsumura
February 1998, Annals of hematology,
M Misaki, and Y Ueyama, and G Tsukamoto, and T Matsumura
February 1990, International journal of radiation oncology, biology, physics,
Copied contents to your clipboard!