Ca2+ signaling modulates cytolytic T lymphocyte effector functions. 1998

M T Esser, and D M Haverstick, and C L Fuller, and C A Gullo, and V L Braciale
Department of Microbiology, University of Virginia, Health Sciences Center, Charlottesville, Virginia 22908, USA.

Cytolytic T cells use two mechanisms to kill virally infected cells, tumor cells, or other potentially autoreactive T cells in short-term in vitro assays. The perforin/granule exocytosis mechanism uses preformed cytolytic granules that are delivered to the target cell to induce apoptosis and eventual lysis. FasL/Fas (CD95 ligand/CD95)-mediated cytolysis requires de novo protein synthesis of FasL by the CTL and the presence of the death receptor Fas on the target cell to induce apoptosis. Using a CD8(+) CTL clone that kills via both the perforin/granule exocytosis and FasL/Fas mechanisms, and a clone that kills via the FasL/Fas mechanism only, we have examined the requirement of intra- and extracellular Ca2+ in TCR-triggered cytolytic effector function. These two clones, a panel of Ca2+ antagonists, and agonists were used to determine that a large biphasic increase in intracellular calcium concentration, characterized by release of Ca2+ from intracellular stores followed by a sustained influx of extracellular Ca2+, is required for perforin/granule exocytosis. Only the sustained influx of extracellular Ca2+ is required for FasL induction and killing. Thapsigargin, at low concentrations, induces this small but sustained increase in [Ca2+]i and selectively induces FasL/Fas-mediated cytolysis but not granule exocytosis. These results further define the role of Ca2+ in perforin and FasL/Fas killing and demonstrate that differential Ca2+ signaling can modulate T cell effector functions.

UI MeSH Term Description Entries
D007476 Ionophores Chemical agents that increase the permeability of biological or artificial lipid membranes to specific ions. Most ionophores are relatively small organic molecules that act as mobile carriers within membranes or coalesce to form ion permeable channels across membranes. Many are antibiotics, and many act as uncoupling agents by short-circuiting the proton gradient across mitochondrial membranes. Ionophore
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D005089 Exocytosis Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
D012697 Serine Endopeptidases Any member of the group of ENDOPEPTIDASES containing at the active site a serine residue involved in catalysis. Serine Endopeptidase,Endopeptidase, Serine,Endopeptidases, Serine
D013602 T-Lymphocytes, Cytotoxic Immunized T-lymphocytes which can directly destroy appropriate target cells. These cytotoxic lymphocytes may be generated in vitro in mixed lymphocyte cultures (MLC), in vivo during a graft-versus-host (GVH) reaction, or after immunization with an allograft, tumor cell or virally transformed or chemically modified target cell. The lytic phenomenon is sometimes referred to as cell-mediated lympholysis (CML). These CD8-positive cells are distinct from NATURAL KILLER CELLS and NATURAL KILLER T-CELLS. There are two effector phenotypes: TC1 and TC2. Cell-Mediated Lympholytic Cells,Cytotoxic T Cells,Cytotoxic T Lymphocyte,Cytotoxic T-Lymphocytes,TC1 Cell,TC1 Cells,TC2 Cell,TC2 Cells,Cell Mediated Lympholytic Cells,Cell, Cell-Mediated Lympholytic,Cell, TC1,Cell, TC2,Cell-Mediated Lympholytic Cell,Cytotoxic T Cell,Cytotoxic T Lymphocytes,Cytotoxic T-Lymphocyte,Lymphocyte, Cytotoxic T,Lympholytic Cell, Cell-Mediated,Lympholytic Cells, Cell-Mediated,T Cell, Cytotoxic,T Lymphocyte, Cytotoxic,T Lymphocytes, Cytotoxic,T-Lymphocyte, Cytotoxic
D013755 Tetradecanoylphorbol Acetate A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. Phorbol Myristate Acetate,12-Myristoyl-13-acetylphorbol,12-O-Tetradecanoyl Phorbol 13-Acetate,Tetradecanoylphorbol Acetate, 4a alpha-Isomer,12 Myristoyl 13 acetylphorbol,12 O Tetradecanoyl Phorbol 13 Acetate,13-Acetate, 12-O-Tetradecanoyl Phorbol,Acetate, Phorbol Myristate,Acetate, Tetradecanoylphorbol,Myristate Acetate, Phorbol,Phorbol 13-Acetate, 12-O-Tetradecanoyl,Tetradecanoylphorbol Acetate, 4a alpha Isomer

Related Publications

M T Esser, and D M Haverstick, and C L Fuller, and C A Gullo, and V L Braciale
June 1989, Journal of immunology (Baltimore, Md. : 1950),
M T Esser, and D M Haverstick, and C L Fuller, and C A Gullo, and V L Braciale
April 1986, Journal of immunology (Baltimore, Md. : 1950),
M T Esser, and D M Haverstick, and C L Fuller, and C A Gullo, and V L Braciale
January 1992, Annals of the New York Academy of Sciences,
M T Esser, and D M Haverstick, and C L Fuller, and C A Gullo, and V L Braciale
December 1992, Transplantation proceedings,
M T Esser, and D M Haverstick, and C L Fuller, and C A Gullo, and V L Braciale
March 1982, Immunobiology,
M T Esser, and D M Haverstick, and C L Fuller, and C A Gullo, and V L Braciale
July 2000, Antimicrobial agents and chemotherapy,
M T Esser, and D M Haverstick, and C L Fuller, and C A Gullo, and V L Braciale
July 1991, Journal of immunology (Baltimore, Md. : 1950),
M T Esser, and D M Haverstick, and C L Fuller, and C A Gullo, and V L Braciale
September 1990, Journal of virology,
M T Esser, and D M Haverstick, and C L Fuller, and C A Gullo, and V L Braciale
June 1993, Current opinion in immunology,
M T Esser, and D M Haverstick, and C L Fuller, and C A Gullo, and V L Braciale
June 1992, Current opinion in immunology,
Copied contents to your clipboard!