Productive infection of neonatal CD8+ T lymphocytes by HIV-1. 1998

L P Yang, and J L Riley, and R G Carroll, and C H June, and J Hoxie, and B K Patterson, and Y Ohshima, and R J Hodes, and G Delespesse
University of Montreal, Centre de Recherche Louis-Charles Simard, Hôpital Notre-Dame, Montreal, Quebec H2L 4M1, Canada.

CD8+ T lymphocytes confer significant but ultimately insufficient protection against HIV infection. Here we report that activated neonatal CD8+ T cells can be productively infected in vitro by macrophage-tropic (M-tropic) HIV-1 isolates, which are responsible for disease transmission, whereas they are resistant to T cell-tropic (T-tropic) HIV strains. Physiological activation of CD8-alpha/beta+ CD4- T cell receptor-alpha/beta+ neonatal T cells, including activation by allogeneic dendritic cells, induces the accumulation of CD4 messenger RNA and the expression of CD4 Ag on the cell surface. The large majority of anti-CD3/B7.1-activated cord blood CD8+ T cells coexpress CD4, the primary HIV receptor, as well as CCR5 and CXCR4, the coreceptors used by M- and T-tropic HIV-1 strains, respectively, to enter target cells. These findings are relevant to the rapid progression of neonatal HIV infection. Infection of primary HIV-specific CD8+ T cells may compromise their survival and thus significantly contribute to the failure of the immune system to control the infection. Furthermore, these results indicate a previously unsuspected level of plasticity in the neonatal immune system in the regulation of CD4 expression by costimulation.

UI MeSH Term Description Entries
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D015658 HIV Infections Includes the spectrum of human immunodeficiency virus infections that range from asymptomatic seropositivity, thru AIDS-related complex (ARC), to acquired immunodeficiency syndrome (AIDS). HTLV-III Infections,HTLV-III-LAV Infections,T-Lymphotropic Virus Type III Infections, Human,HIV Coinfection,Coinfection, HIV,Coinfections, HIV,HIV Coinfections,HIV Infection,HTLV III Infections,HTLV III LAV Infections,HTLV-III Infection,HTLV-III-LAV Infection,Infection, HIV,Infection, HTLV-III,Infection, HTLV-III-LAV,Infections, HIV,Infections, HTLV-III,Infections, HTLV-III-LAV,T Lymphotropic Virus Type III Infections, Human

Related Publications

L P Yang, and J L Riley, and R G Carroll, and C H June, and J Hoxie, and B K Patterson, and Y Ohshima, and R J Hodes, and G Delespesse
January 1989, Nature,
L P Yang, and J L Riley, and R G Carroll, and C H June, and J Hoxie, and B K Patterson, and Y Ohshima, and R J Hodes, and G Delespesse
December 2013, Journal of neurovirology,
L P Yang, and J L Riley, and R G Carroll, and C H June, and J Hoxie, and B K Patterson, and Y Ohshima, and R J Hodes, and G Delespesse
November 1994, AIDS (London, England),
L P Yang, and J L Riley, and R G Carroll, and C H June, and J Hoxie, and B K Patterson, and Y Ohshima, and R J Hodes, and G Delespesse
May 2002, AIDS (London, England),
L P Yang, and J L Riley, and R G Carroll, and C H June, and J Hoxie, and B K Patterson, and Y Ohshima, and R J Hodes, and G Delespesse
June 1995, AIDS (London, England),
L P Yang, and J L Riley, and R G Carroll, and C H June, and J Hoxie, and B K Patterson, and Y Ohshima, and R J Hodes, and G Delespesse
May 2008, AIDS (London, England),
L P Yang, and J L Riley, and R G Carroll, and C H June, and J Hoxie, and B K Patterson, and Y Ohshima, and R J Hodes, and G Delespesse
August 1994, Cell,
L P Yang, and J L Riley, and R G Carroll, and C H June, and J Hoxie, and B K Patterson, and Y Ohshima, and R J Hodes, and G Delespesse
April 1998, The Journal of experimental medicine,
L P Yang, and J L Riley, and R G Carroll, and C H June, and J Hoxie, and B K Patterson, and Y Ohshima, and R J Hodes, and G Delespesse
March 2002, Blood,
L P Yang, and J L Riley, and R G Carroll, and C H June, and J Hoxie, and B K Patterson, and Y Ohshima, and R J Hodes, and G Delespesse
March 1994, Journal of acquired immune deficiency syndromes,
Copied contents to your clipboard!