Mitochondrial inheritance is delayed in Saccharomyces cerevisiae cells lacking the serine/threonine phosphatase PTC1. 1998

A D Roeder, and G J Hermann, and B R Keegan, and S A Thatcher, and J M Shaw
Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA.

In wild-type yeast mitochondrial inheritance occurs early in the cell cycle concomitant with bud emergence. Cells lacking the PTC1 gene initially produce buds without a mitochondrial compartment; however, these buds later receive part of the mitochondrial network from the mother cell. Thus, the loss of PTC1 causes a delay, but not a complete block, in mitochondrial transport. PTC1 encodes a serine/threonine phosphatase in the high-osmolarity glycerol response (HOG) pathway. The mitochondrial inheritance delay in the ptc1 mutant is not attributable to changes in intracellular glycerol concentrations or defects in the organization of the actin cytoskeleton. Moreover, epistasis experiments with ptc1delta and mutations in HOG pathway kinases reveal that PTC1 is not acting through the HOG pathway to control the timing of mitochondrial inheritance. Instead, PTC1 may be acting either directly or through a different signaling pathway to affect the mitochondrial transport machinery in the cell. These studies indicate that the timing of mitochondrial transport in wild-type cells is genetically controlled and provide new evidence that mitochondrial inheritance does not depend on a physical link between the mitochondrial network and the incipient bud site.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D009997 Osmotic Pressure The pressure required to prevent the passage of solvent through a semipermeable membrane that separates a pure solvent from a solution of the solvent and solute or that separates different concentrations of a solution. It is proportional to the osmolality of the solution. Osmotic Shock,Hypertonic Shock,Hypertonic Stress,Hypotonic Shock,Hypotonic Stress,Osmotic Stress,Hypertonic Shocks,Hypertonic Stresses,Hypotonic Shocks,Hypotonic Stresses,Osmotic Pressures,Osmotic Shocks,Osmotic Stresses,Pressure, Osmotic,Pressures, Osmotic,Shock, Hypertonic,Shock, Hypotonic,Shock, Osmotic,Shocks, Hypertonic,Shocks, Hypotonic,Shocks, Osmotic,Stress, Hypertonic,Stress, Hypotonic,Stress, Osmotic,Stresses, Hypertonic,Stresses, Hypotonic,Stresses, Osmotic
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase
D005990 Glycerol A trihydroxy sugar alcohol that is an intermediate in carbohydrate and lipid metabolism. It is used as a solvent, emollient, pharmaceutical agent, or sweetening agent. 1,2,3-Propanetriol,Glycerin,1,2,3-Trihydroxypropane,Glycerine
D000071636 Protein Phosphatase 2C One of four major classes of mammalian serine/threonine specific protein phosphatases. Protein phosphatase 2C is a monomeric enzyme about 42 kDa in size. It shows broad substrate specificity dependent on divalent cations (mainly manganese and magnesium). Three isozymes are known in mammals: PP2C -alpha, -beta and -gamma. In yeast, there are four PP2C homologues: phosphatase PTC1 that have weak tyrosine phosphatase activity, phosphatase PTC2, phosphatase PTC3, and PTC4. Isozymes of PP2C also occur in Arabidopsis thaliana where the kinase-associated protein phosphatase (KAPP) containing a C-terminal PP2C domain, dephosphorylates Ser/Thr receptor-like kinase RLK5. Magnesium-Dependent Protein Phosphatase 2C beta,PP2C beta,PP2Cepsilon,PP2Cgamma,PPM1 Magnesium-Dependent Protein Phosphatases,PPM1 Protein Phosphatases,PPM1D Phosphatase,PPM1E Phosphatase,PPM1G Phosphatase,Ppm1b Phosphatase,Protein Phosphatase 1D Magnesium-Dependent, delta isoform,Protein Phosphatase 2C beta,Protein Phosphatase 2C delta,Protein Phosphatase 2C epsilon,Protein Phosphatase 2C gamma,Ptc2 Phosphatase,2C, Protein Phosphatase,Magnesium Dependent Protein Phosphatase 2C beta,PPM1 Magnesium Dependent Protein Phosphatases,Phosphatase 2C, Protein,Phosphatase, PPM1D,Phosphatase, PPM1E,Phosphatase, PPM1G,Phosphatase, Ppm1b,Phosphatase, Ptc2,Phosphatases, PPM1 Protein,Protein Phosphatase 1D Magnesium Dependent, delta isoform,Protein Phosphatases, PPM1,beta, PP2C
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

A D Roeder, and G J Hermann, and B R Keegan, and S A Thatcher, and J M Shaw
September 1993, Molecular and cellular biology,
A D Roeder, and G J Hermann, and B R Keegan, and S A Thatcher, and J M Shaw
September 2010, FEMS yeast research,
A D Roeder, and G J Hermann, and B R Keegan, and S A Thatcher, and J M Shaw
July 1992, Genetics,
A D Roeder, and G J Hermann, and B R Keegan, and S A Thatcher, and J M Shaw
November 2000, Trends in microbiology,
A D Roeder, and G J Hermann, and B R Keegan, and S A Thatcher, and J M Shaw
June 1997, Journal of bacteriology,
A D Roeder, and G J Hermann, and B R Keegan, and S A Thatcher, and J M Shaw
May 1991, Proceedings of the National Academy of Sciences of the United States of America,
A D Roeder, and G J Hermann, and B R Keegan, and S A Thatcher, and J M Shaw
July 1988, Genetics,
A D Roeder, and G J Hermann, and B R Keegan, and S A Thatcher, and J M Shaw
March 1976, Molecular & general genetics : MGG,
A D Roeder, and G J Hermann, and B R Keegan, and S A Thatcher, and J M Shaw
February 1994, Gene,
A D Roeder, and G J Hermann, and B R Keegan, and S A Thatcher, and J M Shaw
April 1991, Yeast (Chichester, England),
Copied contents to your clipboard!