Purification and some properties of human erythrocyte hexokinase. 1976

G Rijksen, and G E Staal

1. Human erythrocyte hexokinase (ADP:D-hexose 6-phosphotransferase, EC 2.7.1.1) was purified 50 000--100 000-fold with a final specific activity of about 25--50 units/mg protein using gel-filtration, ion-exchange chromatography and affinity chromagraphy. 2. After isoelectrofocusing ofthe preparation one major protein band could be detected besides a minor band. THe isoelectric point of the major protein band was found to be 4.7. 3. After purification the enzyme could be stabilized in a medium containing inorganic phosphate, glucose, glycerol and mercaptoethanol. 4. The molecular weight was determined by gel-filtration and was found to be 132 000+/-8000. 5. The enzyme shows a broad pH optimum ranging from 7.0 to 8.4. 6. The kinetic behavior of the purified enzyme at 37 degrees C was somewhat different from the normal Michaelis-Menten kinetics due to its instability. The affinity constants were 0.048--0.080 mM for glucose and 0.57--1.0 mM for Mg-ATP. 7. The enzyme was specific for Mg- ATP as the nucleotide substrate. Mg-UTP, Mg-ITP,Mg-GTP and Mg-CTP were not converted to corresponding diphosphates. Several hexoses could be phosphorylated by the enzyme. Mannose could be phosphorylated at the same rate as glucose, although the affinity for the enzyme was lower (5m=0.60mM). Much lower rates and lower affinities were found with 2-deoxy-D-glucose (5m=1.0mM), D(+)-glucosamine (5m=4.5 mM) and fructose (5m=10 mM). N-acetyl-D-glucosamine , galactose andsorbose were not phosphorylated at all.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D004355 Drug Stability The chemical and physical integrity of a pharmaceutical product. Drug Shelf Life,Drugs Shelf Lives,Shelf Life, Drugs,Drug Stabilities,Drugs Shelf Life,Drugs Shelf Live,Life, Drugs Shelf,Shelf Life, Drug,Shelf Live, Drugs,Shelf Lives, Drugs
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006593 Hexokinase An enzyme that catalyzes the conversion of ATP and a D-hexose to ADP and a D-hexose 6-phosphate. D-Glucose, D-mannose, D-fructose, sorbitol, and D-glucosamine can act as acceptors; ITP and dATP can act as donors. The liver isoenzyme has sometimes been called glucokinase. (From Enzyme Nomenclature, 1992) EC 2.7.1.1. Hexokinase A,Hexokinase D,Hexokinase II
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

G Rijksen, and G E Staal
December 1982, Journal of biochemistry,
G Rijksen, and G E Staal
October 1997, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
G Rijksen, and G E Staal
July 1972, Biochimica et biophysica acta,
G Rijksen, and G E Staal
January 1971, Biochimica et biophysica acta,
G Rijksen, and G E Staal
March 1980, The Journal of biological chemistry,
G Rijksen, and G E Staal
January 1978, Biochimica et biophysica acta,
G Rijksen, and G E Staal
June 1985, Archives of biochemistry and biophysics,
G Rijksen, and G E Staal
October 1986, Biochimica et biophysica acta,
G Rijksen, and G E Staal
March 1964, Journal of biochemistry,
G Rijksen, and G E Staal
June 1978, Nihon juigaku zasshi. The Japanese journal of veterinary science,
Copied contents to your clipboard!