Induction of axon-like and dendrite-like processes in neuroblastoma cells. 1998

G Wu, and Y Fang, and Z H Lu, and R W Ledeen
New Jersey Medical School, UMDNJ, Department of Neurosciences, Newark 07103, USA.

Neuroblastoma cells are widely utilized models for the study of the neuritic outgrowth phase of neuronal differentiation, but relatively few such studies have attempted to identify the nature of the process outgrowths. This identification will be necessary in developing strategies for utilizing these models to distinguish the underlying mechanisms involved in axonogenesis vs dendritogenesis. In an effort to identify procedures for inducing specific types of neurite outgrowth, and for distinguishing axon- from dendrite-like processes, we have subjected two neuroblastoma cell lines to a variety of stimuli previously shown to induce neurite outgrowth in these cells. These include neuraminidase, ionomycin, KCl+dibutyryl cAMP, cholera toxin B subunit, retinoic acid, dibutyryl cAMP (alone), GM1 ganglioside, and low serum. The first four of these (group 1) gave rise to neurites with axon-like characteristics, including immunostaining that was positive for phosphorylated high molecular weight neurofilament protein (NF-H) and synaptic vesicle protein-2 (SV2), but negative for microtubule-associated protein-2 (MAP2). The next three treatments (group 2) resulted in dendrite-like processes, as evidenced in immunostaining that was positive for MAP2 and negative for NF-H and SV2. Neurites produced by low serum had mixed properties. These cytoskeletal differences were supported by immunoblot analysis with antisera to the above cytoskeletal proteins. Striking morphological differences were also noted, group 2-induced neurites being significantly shorter with more branch points than those generated by group 1 stimulants. Time of exposure to stimulatory agent was crucial in determining expression of the neuritic phenotype. Correlation with previous studies suggests that axon-like neurites result from stimulants which elevate intracellular Ca2+, a dependence not previously reported to our knowledge. Dendrite-like process outgrowth, on the other hand, does not appear to depend on altered intracellular Ca2+.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009439 Neuraminidase An enzyme that catalyzes the hydrolysis of alpha-2,3, alpha-2,6-, and alpha-2,8-glycosidic linkages (at a decreasing rate, respectively) of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid, and synthetic substrate. (From Enzyme Nomenclature, 1992) Sialidase,Exo-alpha-Sialidase,N-Acylneuraminate Glycohydrolases,Oligosaccharide Sialidase,Exo alpha Sialidase,Glycohydrolases, N-Acylneuraminate,N Acylneuraminate Glycohydrolases,Sialidase, Oligosaccharide
D009447 Neuroblastoma A common neoplasm of early childhood arising from neural crest cells in the sympathetic nervous system, and characterized by diverse clinical behavior, ranging from spontaneous remission to rapid metastatic progression and death. This tumor is the most common intraabdominal malignancy of childhood, but it may also arise from thorax, neck, or rarely occur in the central nervous system. Histologic features include uniform round cells with hyperchromatic nuclei arranged in nests and separated by fibrovascular septa. Neuroblastomas may be associated with the opsoclonus-myoclonus syndrome. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2099-2101; Curr Opin Oncol 1998 Jan;10(1):43-51) Neuroblastomas
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D002772 Cholera Toxin An ENTEROTOXIN from VIBRIO CHOLERAE. It consists of two major protomers, the heavy (H) or A subunit and the B protomer which consists of 5 light (L) or B subunits. The catalytic A subunit is proteolytically cleaved into fragments A1 and A2. The A1 fragment is a MONO(ADP-RIBOSE) TRANSFERASE. The B protomer binds cholera toxin to intestinal epithelial cells and facilitates the uptake of the A1 fragment. The A1 catalyzed transfer of ADP-RIBOSE to the alpha subunits of heterotrimeric G PROTEINS activates the production of CYCLIC AMP. Increased levels of cyclic AMP are thought to modulate release of fluid and electrolytes from intestinal crypt cells. Cholera Toxin A,Cholera Toxin B,Cholera Toxin Protomer A,Cholera Toxin Protomer B,Cholera Toxin Subunit A,Cholera Toxin Subunit B,Choleragen,Choleragenoid,Cholera Enterotoxin CT,Cholera Exotoxin,Cholera Toxin A Subunit,Cholera Toxin B Subunit,Procholeragenoid,Enterotoxin CT, Cholera,Exotoxin, Cholera,Toxin A, Cholera,Toxin B, Cholera,Toxin, Cholera
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine
D005677 G(M1) Ganglioside A specific monosialoganglioside that accumulates abnormally within the nervous system due to a deficiency of GM1-b-galactosidase, resulting in GM1 gangliosidosis. GM1 Ganglioside,Monosialosyl Tetraglycosyl Ceramide,GM1a Monosialoganglioside,Ceramide, Monosialosyl Tetraglycosyl,Ganglioside, GM1,Monosialoganglioside, GM1a,Tetraglycosyl Ceramide, Monosialosyl

Related Publications

G Wu, and Y Fang, and Z H Lu, and R W Ledeen
February 1997, The Journal of cell biology,
G Wu, and Y Fang, and Z H Lu, and R W Ledeen
January 1999, Journal of neuroscience research,
G Wu, and Y Fang, and Z H Lu, and R W Ledeen
March 2006, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology,
G Wu, and Y Fang, and Z H Lu, and R W Ledeen
October 2011, Clinical and translational science,
G Wu, and Y Fang, and Z H Lu, and R W Ledeen
November 2007, Experimental eye research,
G Wu, and Y Fang, and Z H Lu, and R W Ledeen
August 2014, Current opinion in neurobiology,
G Wu, and Y Fang, and Z H Lu, and R W Ledeen
January 2012, Annual review of neuroscience,
G Wu, and Y Fang, and Z H Lu, and R W Ledeen
January 2015, PloS one,
G Wu, and Y Fang, and Z H Lu, and R W Ledeen
January 2012, Frontiers in molecular neuroscience,
Copied contents to your clipboard!