Transcriptional regulation of urokinase-type plasminogen activator receptor by cyclic AMP in PL-21 human myeloid leukemia cells: comparison with the regulation by phorbol myristate acetate. 1998

K Niiya, and T Ozawa, and T Tsuzawa, and S Ueshima, and O Matsuo, and N Sakuragawa
Dept. of Clinical Laboratory Medicine, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Sugitani, Japan. kjmd@ms.toyama-mpu.ac.jp

We investigated the effect of dibutyryl cyclic AMP (Bt2-cAMP) on urokinase-type plasminogen activator receptor (uPAR) expression in human PL-21 myeloid leukemia cells and compared it with the effect of phorbol myristate acetate (PMA). Flow cytometric analysis clearly demonstrated that Bt2-cAMP and PMA both induced the cell surface expression of uPAR. Northern analysis and nuclear run-on assay revealed that cAMP and PMA activated the uPAR gene transcription and both additively increased the uPAR mRNA level. However, actinomycin-D decay experiment showed that PMA, but not cAMP, prolonged the uPAR mRNA half-life. Furthermore, inhibition of the ongoing protein synthesis with cycloheximide abrogated completely the PMA-induced uPAR mRNA accumulation but only partially the induction by PMA plus cAMP, whereas the induction by cAMP alone was rather amplified, indicating that the de novo protein synthesis is necessary in the induction by PMA but not in the induction by cAMP and that the cAMP pathway may be dominant in uPAR gene expression in the PL-21 cells as compared to the PMA pathway. These results suggest that cAMP induces the uPAR expression exclusively through activating the gene transcription in which a preexisting transcriptional factor may be involved, whereas PMA transcriptionally and posttranscriptionally regulates the uPAR gene expression.

UI MeSH Term Description Entries
D007951 Leukemia, Myeloid Form of leukemia characterized by an uncontrolled proliferation of the myeloid lineage and their precursors (MYELOID PROGENITOR CELLS) in the bone marrow and other sites. Granulocytic Leukemia,Leukemia, Granulocytic,Leukemia, Myelocytic,Leukemia, Myelogenous,Myelocytic Leukemia,Myelogenous Leukemia,Myeloid Leukemia,Leukemia, Monocytic, Chronic,Monocytic Leukemia, Chronic,Chronic Monocytic Leukemia,Chronic Monocytic Leukemias,Granulocytic Leukemias,Leukemia, Chronic Monocytic,Leukemias, Chronic Monocytic,Leukemias, Granulocytic,Leukemias, Myelocytic,Leukemias, Myelogenous,Leukemias, Myeloid,Monocytic Leukemias, Chronic,Myelocytic Leukemias,Myelogenous Leukemias,Myeloid Leukemias
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D013755 Tetradecanoylphorbol Acetate A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. Phorbol Myristate Acetate,12-Myristoyl-13-acetylphorbol,12-O-Tetradecanoyl Phorbol 13-Acetate,Tetradecanoylphorbol Acetate, 4a alpha-Isomer,12 Myristoyl 13 acetylphorbol,12 O Tetradecanoyl Phorbol 13 Acetate,13-Acetate, 12-O-Tetradecanoyl Phorbol,Acetate, Phorbol Myristate,Acetate, Tetradecanoylphorbol,Myristate Acetate, Phorbol,Phorbol 13-Acetate, 12-O-Tetradecanoyl,Tetradecanoylphorbol Acetate, 4a alpha Isomer
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015533 Transcriptional Activation Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes. Gene Activation,Genetic Induction,Transactivation,Induction, Genetic,Trans-Activation, Genetic,Transcription Activation,Activation, Gene,Activation, Transcription,Activation, Transcriptional,Genetic Trans-Activation,Trans Activation, Genetic
D055293 Receptors, Urokinase Plasminogen Activator An extracellular receptor specific for UROKINASE-TYPE PLASMINOGEN ACTIVATOR. It is attached to the cell membrane via a GLYCOSYLPHOSPHATIDYLINOSITOL LINKAGE and plays a role in the co-localization of urokinase-type plasminogen activator with PLASMINOGEN. Antigens, CD87,Urokinase Plasminogen Activator Receptor,Urokinase Type Plasminogen Activator Receptor,Urokinase-Type Plasminogen Activator Receptor,CD87 Antigen,Plasminogen Activator Receptor, Urokinase Type,Plasminogen Activator, Urokinase Receptor,Plasminogen Activator, Urokinase Receptors,Receptor, Pro-Urokinase,Receptor, Urokinase Plasminogen Activator,U-PA Receptor,Upar Receptor,Urokinase Plasminogen Activator Receptors,Urokinase-Type Plasminogen Activator Receptors,Antigen, CD87,CD87 Antigens,Pro-Urokinase Receptor,Receptor, Pro Urokinase,Receptor, U-PA,Receptor, Upar,U PA Receptor,Urokinase Type Plasminogen Activator Receptors

Related Publications

K Niiya, and T Ozawa, and T Tsuzawa, and S Ueshima, and O Matsuo, and N Sakuragawa
December 1995, Cell structure and function,
K Niiya, and T Ozawa, and T Tsuzawa, and S Ueshima, and O Matsuo, and N Sakuragawa
April 1992, Biochimica et biophysica acta,
K Niiya, and T Ozawa, and T Tsuzawa, and S Ueshima, and O Matsuo, and N Sakuragawa
July 1994, Thrombosis and haemostasis,
K Niiya, and T Ozawa, and T Tsuzawa, and S Ueshima, and O Matsuo, and N Sakuragawa
February 1989, The Journal of cell biology,
K Niiya, and T Ozawa, and T Tsuzawa, and S Ueshima, and O Matsuo, and N Sakuragawa
December 1998, Experimental & molecular medicine,
K Niiya, and T Ozawa, and T Tsuzawa, and S Ueshima, and O Matsuo, and N Sakuragawa
February 1986, FEBS letters,
K Niiya, and T Ozawa, and T Tsuzawa, and S Ueshima, and O Matsuo, and N Sakuragawa
July 2017, Oncology letters,
K Niiya, and T Ozawa, and T Tsuzawa, and S Ueshima, and O Matsuo, and N Sakuragawa
January 1987, Comparative biochemistry and physiology. B, Comparative biochemistry,
K Niiya, and T Ozawa, and T Tsuzawa, and S Ueshima, and O Matsuo, and N Sakuragawa
March 1983, Blood,
K Niiya, and T Ozawa, and T Tsuzawa, and S Ueshima, and O Matsuo, and N Sakuragawa
July 1977, Cell,
Copied contents to your clipboard!