DNA molecules can be manipulated in aqueous solution in a manner analogous to optical trapping. Due to the induction of an electric dipole, DNA molecules are pulled by a gradient force to regions of high electric field strength. Molecules can be locally trapped in an oscillating field using strips of very thin gold film to generate strong electric fields with steep gradients. Spatial control over the trapped molecules is achieved because they are confined to a width of approximately 5 microm along the edges of the gold-film strips. By mixing static and oscillating electric fields, trapped molecules can be moved from one edge to another or made to follow precise trajectories along the edges. This phenomenon should be useful in microdevices for manipulation of small quantities or single molecules of DNA.