Telomere length distribution and Southern blot analysis. 1998

K Oexle
Department of Pediatrics and Human Genetics, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, Hannover, D-30625, Germany.

Southern blot analysis of terminal restriction fragments (TRFs) is the standard method for quantitative examination of telomere length distributions. Since TRFs contain a subtelomeric component, central parameters of the TRF distribution n(L) such as the arithmetic mean (M) or the median (Me) cannot be derived directly from Southern blot data, i.e. from the optical density distribution OD(L). Several estimates have been applied instead; the seeming arithmetic mean A, the "center of mass" C, and the positions of maximal (P) and half-maximal optical density (P(1/2)). We show that C> A> M for any non-truncated distributions n(L), and P> M> P1/2 for any symmetrical unimodal n(L). Symmetric appearance on a Southern blot, however, suggests positive skewness of n(L). Thus, a lognormal form of n(L) may be considered. Then, C> A> M> P=Me> P(1/2). Alternatively, a Weibull distribution may be assumed. The latter is compatible with negative feedback-regulation of the telomere lengths. Using the maximum likelihood method we compare these distributions with FISH-data on telomere lengths in different cell types. The fit of the lognormal distribution is clearly superior. Lognormal genesis may relate to telomere breakage and recombination. Truncation of the upper end of the TRF distribution is possible due to Southern blot artifacts. Thereby, the order of the estimates may change to P> C> A. Having minimal sensitivity to truncation, P seems to be the optimal choice. however, the variability of P is high since peakedness of OD(L) and DNA length resolution are inversely related.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015139 Blotting, Southern A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Southern Blotting,Blot, Southern,Southern Blot
D016615 Telomere A terminal section of a chromosome which has a specialized structure and which is involved in chromosomal replication and stability. Its length is believed to be a few hundred base pairs. Telomeres
D017404 In Situ Hybridization, Fluorescence A type of IN SITU HYBRIDIZATION in which target sequences are stained with fluorescent dye so their location and size can be determined using fluorescence microscopy. This staining is sufficiently distinct that the hybridization signal can be seen both in metaphase spreads and in interphase nuclei. FISH Technique,Fluorescent in Situ Hybridization,Hybridization in Situ, Fluorescence,FISH Technic,Hybridization in Situ, Fluorescent,In Situ Hybridization, Fluorescent,FISH Technics,FISH Techniques,Technic, FISH,Technics, FISH,Technique, FISH,Techniques, FISH

Related Publications

Copied contents to your clipboard!