Selective pituitary resistance to thyroid hormone produced by expression of a mutant thyroid hormone receptor beta gene in the pituitary gland of transgenic mice. 1998

Y Hayashi, and J Xie, and R E Weiss, and J Pohlenz, and S Refetoff
Department of Medicine, The University of Chicago, Chicago, Illinois, 60637, USA.

Resistance to thyroid hormone (RTH) has been subdivided into generalized resistance (GRTH) and pituitary resistance (PRTH) based on the clinical impression of absence or presence of thyrotoxicosis. However, due to lack of objective clinical and genetic criteria, the existence of PRTH as a distinct entity became controversial. To determine what the phenotype would be if RTH was confined to the pituitary, a transgenic mouse was developed in which expression of the mutant thyroid hormone receptor (TR) beta (G345R) was targeted to the pituitary thyrotrophs by placing it downstream of the mouse thyrotropin beta promoter. This construct exhibited an antagonistic effect on the thyroid hormone-dependent transactivation, mediated through the wild-type TRbeta1, only when cotransfected with the thyrotroph embryonic factor in a heterologous cell line. As expected the transgene was transcribed predominantly in the pituitary gland but not in liver. These mice showed a significant, though modest, increase in serum T4 concentration. A decrease in the serum cholesterol was observed in keeping with the selective tissue hyposensitivity to thyroid hormone.

UI MeSH Term Description Entries
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011988 Receptors, Thyroid Hormone Specific high affinity binding proteins for THYROID HORMONES in target cells. They are usually found in the nucleus and regulate DNA transcription. These receptors are activated by hormones that leads to transcription, cell differentiation, and growth suppression. Thyroid hormone receptors are encoded by two genes (GENES, ERBA): erbA-alpha and erbA-beta for alpha and beta thyroid hormone receptors, respectively. Diiodotyrosine Receptors,Receptors, Diiodotyrosine,Receptors, Thyroxine,Receptors, Triiodothyronine,T3 Receptors,T4 Receptors,Thyroid Hormone Receptors,Thyroxine Receptors,Triiodothyronine Receptors,DIT Receptors,Diiodotyrosine Receptor,MIT Receptors,Monoiodotyrosine Receptors,Receptors, DIT,Receptors, MIT,Receptors, Monoiodotyrosine,Receptors, T3,Receptors, T4,T3 Receptor,T4 Receptor,Thyroid Hormone Receptor,Thyroxine Receptor
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013960 Thyroid Function Tests Blood tests used to evaluate the functioning of the thyroid gland. Jostel's TSH Index,Jostel's Thyrotropin Index,Protein-Bound Iodine Test,SPINA-GD,SPINA-GT,Secretory Capacity of the Thyroid Gland,Sum Activity of Peripheral Deiodinases,Thyrotroph Thyroid Hormone Sensitivity Index,Thyroid Gland Function Tests,Function Test, Thyroid,Iodine Test, Protein-Bound,Jostel TSH Index,Jostel Thyrotropin Index,Jostel's TSH Indices,Jostels TSH Index,Jostels Thyrotropin Index,Protein Bound Iodine Test,Protein-Bound Iodine Tests,TSH Index, Jostel's,Test, Protein-Bound Iodine,Test, Thyroid Function,Thyroid Function Test,Thyrotropin Index, Jostel's

Related Publications

Y Hayashi, and J Xie, and R E Weiss, and J Pohlenz, and S Refetoff
November 1999, Thyroid : official journal of the American Thyroid Association,
Y Hayashi, and J Xie, and R E Weiss, and J Pohlenz, and S Refetoff
January 1996, Molecular endocrinology (Baltimore, Md.),
Y Hayashi, and J Xie, and R E Weiss, and J Pohlenz, and S Refetoff
January 2008, Angewandte Chemie (International ed. in English),
Y Hayashi, and J Xie, and R E Weiss, and J Pohlenz, and S Refetoff
January 2018, Case reports in endocrinology,
Y Hayashi, and J Xie, and R E Weiss, and J Pohlenz, and S Refetoff
March 2005, The Journal of clinical endocrinology and metabolism,
Y Hayashi, and J Xie, and R E Weiss, and J Pohlenz, and S Refetoff
September 2006, The Journal of clinical endocrinology and metabolism,
Y Hayashi, and J Xie, and R E Weiss, and J Pohlenz, and S Refetoff
October 1999, Thyroid : official journal of the American Thyroid Association,
Y Hayashi, and J Xie, and R E Weiss, and J Pohlenz, and S Refetoff
February 2001, Journal of the American Chemical Society,
Y Hayashi, and J Xie, and R E Weiss, and J Pohlenz, and S Refetoff
May 2018, Medicine,
Copied contents to your clipboard!