Hydrogen peroxide causes RAD9-dependent cell cycle arrest in G2 in Saccharomyces cerevisiae whereas menadione causes G1 arrest independent of RAD9 function. 1998

J A Flattery-O'Brien, and I W Dawes
School of Biochemistry & Molecular Genetics, Cooperative Research Centre for Food Industry Innovation, University of New South Wales, Sydney NSW 2052, Australia.

This study shows differences at the level of cell cycle arrest between the response of yeast cells to hydrogen peroxide and superoxide stress. These include both cell cycle phases at which arrest occurs and the involvement of the RAD9 checkpoint gene. Wild-type and rad9 cells were treated with hydrogen peroxide or the superoxide-generating agent menadione. rad9 mutants were up to 100-fold more sensitive to hydrogen peroxide but not affected in their resistance to menadione. Hydrogen peroxide caused G2-phase arrest, whereas menadione-treated cells arrested in G1. G2 arrest, induced by methyl 2-benzimidazil carbamate, increased cellular resistance to hydrogen peroxide but not to menadione. G1 arrest mediated by alpha-factor caused an increase in survival of wild-type cells treated with menadione but not with hydrogen peroxide. A cdc28 mutant arrested in G1 was significantly more sensitive to hydrogen peroxide than other cdc mutants arrested in later phases, including G2. rad9 cells have normal stationary phase resistance to hydrogen peroxide, the ability to adapt to it, glutathione content and induction of genes via the stress responsive element. Although rad9-dependent G2 arrest is important, other rad9-dependent factors may be involved in the resistance of cells to hydrogen peroxide since arrest in G2 did not make rad9 cells fully resistant.

UI MeSH Term Description Entries
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010675 Pheromones Chemical substances, excreted by an organism into the environment, that elicit behavioral or physiological responses from other organisms of the same species. Perception of these chemical signals may be olfactory or by contact. Allelochemical,Allelochemicals,Allomone,Allomones,Ectohormones,Kairomone,Kairomones,Pheromone,Semiochemical,Semiochemicals,Synomones
D002219 Carbamates Derivatives of carbamic acid, H2NC( Carbamate,Aminoformic Acids,Carbamic Acids,Acids, Aminoformic,Acids, Carbamic
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen

Related Publications

J A Flattery-O'Brien, and I W Dawes
September 1993, Proceedings of the National Academy of Sciences of the United States of America,
J A Flattery-O'Brien, and I W Dawes
March 2003, The Journal of biological chemistry,
J A Flattery-O'Brien, and I W Dawes
February 1996, Radiation and environmental biophysics,
J A Flattery-O'Brien, and I W Dawes
August 2009, Anatomical record (Hoboken, N.J. : 2007),
J A Flattery-O'Brien, and I W Dawes
October 1992, Journal of bacteriology,
J A Flattery-O'Brien, and I W Dawes
April 2014, The Journal of toxicological sciences,
J A Flattery-O'Brien, and I W Dawes
January 1998, Oncogene,
J A Flattery-O'Brien, and I W Dawes
January 1989, Journal of cell science. Supplement,
Copied contents to your clipboard!