Probing the structure of the nicotinic acetylcholine receptor ion channel with the uncharged photoactivable compound -3H-diazofluorene. 1998

M P Blanton, and L J Dangott, and S K Raja, and A K Lala, and J B Cohen
Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.

The uncharged photoactivable probe 2-[3H]diazofluorene ([3H]DAF) was used to examine structural changes in the Torpedo californica nicotinic acetylcholine receptor (AChR) ion channel induced by agonists. Photoincorporation of [3H]DAF into the AChR consisted of the following two components: a nonspecific component consistent with incorporation into residues situated at the lipid-protein interface, and a specific component, inhibitable by noncompetitive antagonists and localized to the M2 hydrophobic segments of AChR subunits. The nonspecific [3H]DAF incorporation was characterized in the M4 segment of each AChR subunit. The observed distribution and periodicity of labeled residues reinforce the conclusion that the M4 segments are organized as transmembrane alpha-helices with a common "face" of each helix in contact with lipid. Within the M2 segments, in the absence of agonist [3H]DAF specifically labeled homologous residues betaVal-261 and deltaVal-269, with incorporation into deltaVal-269 at a 5-fold greater efficiency than into betaVal-261. This observation, coupled with the lack of detectable incorporation into alpha-M2 including the homologous alphaVal-255, indicates that within the resting channel [3H]DAF is bound with its photoreactive diazo group oriented toward deltaVal-269. In the presence of agonist, there is an approximately 90% reduction in the labeling of betaVal-261 and deltaVal-269 accompanied by specific incorporation into residues (betaLeu-257, betaAla-258, deltaSer-262, and deltaLeu-265) situated 1 or 2 turns of an alpha-helix closer to the cytoplasmic end of the M2 segments. The results provide a further characterization of agonist-induced rearrangements of the M2 (ion channel) domain of the AChR.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003979 Diazonium Compounds Azo compounds consisting of an aryl or alkyl group that is joined through two nitrogen atoms to an anion (R-N2+X-). Compounds, Diazonium
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric

Related Publications

M P Blanton, and L J Dangott, and S K Raja, and A K Lala, and J B Cohen
March 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M P Blanton, and L J Dangott, and S K Raja, and A K Lala, and J B Cohen
April 1989, Sheng li ke xue jin zhan [Progress in physiology],
M P Blanton, and L J Dangott, and S K Raja, and A K Lala, and J B Cohen
July 1986, European journal of biochemistry,
M P Blanton, and L J Dangott, and S K Raja, and A K Lala, and J B Cohen
February 2017, Biochimica et biophysica acta. Biomembranes,
M P Blanton, and L J Dangott, and S K Raja, and A K Lala, and J B Cohen
September 2000, Biochemistry,
M P Blanton, and L J Dangott, and S K Raja, and A K Lala, and J B Cohen
April 1982, Proceedings of the National Academy of Sciences of the United States of America,
M P Blanton, and L J Dangott, and S K Raja, and A K Lala, and J B Cohen
January 2002, Bioorganicheskaia khimiia,
M P Blanton, and L J Dangott, and S K Raja, and A K Lala, and J B Cohen
September 2001, Molecular pharmacology,
M P Blanton, and L J Dangott, and S K Raja, and A K Lala, and J B Cohen
August 1987, FEBS letters,
M P Blanton, and L J Dangott, and S K Raja, and A K Lala, and J B Cohen
January 1991, NIDA research monograph,
Copied contents to your clipboard!