Folding a WD repeat propeller. Role of highly conserved aspartic acid residues in the G protein beta subunit and Sec13. 1998

I Garcia-Higuera, and C Gaitatzes, and T F Smith, and E J Neer
Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.

The beta subunit of the heterotrimeric G proteins that transduce signals across the plasma membrane is made up of an amino-terminal alpha-helical segment followed by seven repeating units called WD (Trp-Asp) repeats that occur in about 140 different proteins. The seven WD repeats in Gbeta, the only WD repeat protein whose crystal structure is known, form seven antiparallel beta sheets making up the blades of a toroidal propeller structure (Wall, M. A., Coleman, D. E., Lee, E., Iniguez-Lluhi, J. A., Posner, B. A., Gilman, A. G., and Sprang, S. R. (1995) Cell 83, 1047-1058; Sondek, J., Bohm, A., Lambright, D. G., Hamm, H. E., and Sigler, P. B. (1996) Nature 379, 369-374). It is likely that all proteins with WD repeats form a propeller structure. Alignment of the sequence of 918 unique WD repeats reveals that 85% of the repeats have an aspartic acid (D) residue (not the D of WD) in the turn connecting beta strands b and c of each putative propeller blade. We mutated each of these conserved Asp residues to Gly individually and in pairs in Gbeta and in Sec13, a yeast WD repeat protein involved in vesicular traffic, and then analyzed the ability of the mutant proteins to fold in vitro and in COS-7 cells. In vitro, most single mutant Gbeta subunits fold into Gbetagamma dimers more slowly than wild type to a degree that varies with the blade. In contrast, all single mutants form normal amounts of Gbetagamma in COS-7 cells, although some dimers show subtle local distortions of structure. Most double mutants assemble poorly in both systems. We conclude that the conserved Asp residues are not equivalent and not all are essential for the folding of the propeller structure. Some may affect the folding pathway or the affinity for chaperonins. Mutations of the conserved Asp in Sec13 affect folding equally in vitro and in COS-7 cells. The repeats that most affected folding were not at the same position in Sec13 and Gbeta. Our finding, both in Gbeta and in Sec13, that no mutation of the conserved Asp entirely prevents folding suggests that there is no obligatory folding order for each repeat and that the folding order is probably not the same for different WD repeat proteins, or even necessarily constant for the same protein.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

I Garcia-Higuera, and C Gaitatzes, and T F Smith, and E J Neer
November 1996, Biochemistry,
I Garcia-Higuera, and C Gaitatzes, and T F Smith, and E J Neer
March 2007, The FEBS journal,
I Garcia-Higuera, and C Gaitatzes, and T F Smith, and E J Neer
December 1996, Biochemistry,
I Garcia-Higuera, and C Gaitatzes, and T F Smith, and E J Neer
September 2006, Biomolecular engineering,
I Garcia-Higuera, and C Gaitatzes, and T F Smith, and E J Neer
January 1996, Nature,
I Garcia-Higuera, and C Gaitatzes, and T F Smith, and E J Neer
January 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing,
I Garcia-Higuera, and C Gaitatzes, and T F Smith, and E J Neer
January 2004, Journal of molecular biology,
I Garcia-Higuera, and C Gaitatzes, and T F Smith, and E J Neer
July 1997, Biochemistry,
Copied contents to your clipboard!